2008, Number 3
<< Back Next >>
Med Sur 2008; 15 (3)
Differential diagnosis of early-stage glioblastoma multiform with spectroscopy, the usefulness of MRI-advances analysis in diagnosing cerebral lesions
Pérez MC, Zavala RA, Montesinos UI, Arrieta A, Martínez LM, Roldán VE
Language: Spanish
References: 17
Page: 233-239
PDF size: 217.30 Kb.
ABSTRACT
The usefulness of the magnetic resonance imaging (MRI) nowadays goes beyond the anatomic details, it provides an accurate assessment of the physiology and chemical composition of the brain. The roll of MRI en the detection of intraaxial brain tumors includes the diagnosis, classification, treatment planning and follow-up; MRI participates in all the steps during the evaluation of a tumoral lesion. In one of the biggest series of brain lesion with histopathologic examination, high-grade glial lesion represented 36% and low-grade lesion 33% of brain lesions. The MRI evaluation of tumoral lesions consist of conventional sequences (T1 with and without gadolinium, T2, Flair, diffusion, gradient echo and 3D TOF), and advanced sequences (apparent diffusion coefficient showing increased diffusion, cerebral perfusion with increased relative tumoral blood volume, and multivoxel spectroscopy with increased peak of choline/N-acetilaspartate). The knowledge of the brain tumors as well as morphologic and physiologic features observed with MRI, allow the radiologic to do an early diagnosis even before the presentation of classical findings of the disease. We present the imaging evaluation of a high-grade glial tumor in early stage with a description of the main findings in morphology and physiology using MRI.
REFERENCES
Al-Okaili RN, Krejza J, Wang S, Woo JH, Melhem ER. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics 2006; 26 Suppl 1: S173-89.
Tilgner J, Herr M, Ostertag C, Volk B. Validation of intraoperative diagnoses using smear preparations from stereotactic brain biopsies: intraoperative versus final diagnosis-influence of clinical factors. Neurosurgery 2005; 56(2): 257-65; discussion 257-65.
Gupta RK, Sinha U, Cloughesy TF, Alger JR. Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med 1999; 41(1): 2-7.
Lai PH, Ho JT, Chen WL, Hsu SS, Wang JS, Pan HB et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 2002; 23(8): 1369-77.
Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000; 92(24): 2029-36.
Aronen HJ, Pardo FS, Kennedy DN, Belliveau JW, Packard SD, Hsu DW et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 2000; 6(6): 2189-200.
Aronen HJ, Glass J, Pardo FS, Belliveau JW, Gruber ML, Buchbinder BR et al. Echo-planar MR cerebral blood volume mapping of gliomas. Clinical utility. Acta Radiol 1995; 36(5): 520-8.
Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994; 191(1): 41-51.
Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999; 211(3): 791-8.
Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003; 24(10): 1989-98.
Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh GRt et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 2004; 25(2): 214-21.
Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED et al. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 1996; 84(3): 449-58.
Tien RD, Lai PH, Smith JS, Lazeyras F. Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors. AJR Am J Roentgenol 1996; 167(1): 201-9.
Butzen J, Prost R, Chetty V, Donahue K, Neppl R, Bowen W et al. Discrimination between neoplastic and nonneoplastic brain lesions by use of proton MR spectroscopy: the limits of accuracy with a logistic regression model. AJNR Am J Neuroradiol 2000; 21(7): 1213-9.
Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 2003; 49(2): 223-32.
Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 2002; 44(5): 371-81.
Galanaud D, Chinot O, Nicoli F, Confort-Gouny S, Le Fur Y, Barrie-Attarian M et al. Use of proton magnetic resonance spectroscopy of the brain to differentiate gliomatosis cerebri from low-grade glioma. J Neurosurg 2003; 98(2): 269-76.