2007, Number 6
<< Back Next >>
salud publica mex 2007; 49 (6)
Spinal cord injury and regenerative medicine.
Estrada-Mondaca S, Carreón-Rodríguez A, Parra-Cid MC, Ibarra-Ponce LC, Velasquillo-Martínez C, Vacanti CA, Belkind-Gerson J
Language: Spanish
References: 60
Page: 437-444
PDF size: 252.70 Kb.
ABSTRACT
Spinal cord injury (SCI) is a trauma problem striking mainly working age adults, therefore affecting society beyond the victim’s family circle. Most of the victims of SCI will never recover; therapy for this type of injury consists basically on spinal cord support and stabilization. With the discovery of stem cells (SC), SCI treatment has been given another chance. Stem cells are responsible for tissue renewal throughout the individual’s life, as well as tissue repair when needed. From the therapeutic point of view, the most appealing SC are those capable of generating a variety of tissues, those easily harvested, and finally, those ethically unquestioned. This article summarizes some studies carried with SC of various origins and their application to SCI treatment.
REFERENCES
Disponible en: http://www.discapacinet.gob.mx/wb2/eMex/eMex_ Lesiones_Medulares
Disponible en: www.cdc.gov/health/default.htm.
National Spinal Cord Injury Association Resource Center. Disponible en: http:www.sci-info-pages.com.
Coleman WP, Benzel D, Cahill DW, Ducker T, Geisler F, Green B, et al. A critical appraisal of the reporting of the National Acute Spinal Cord Injury Studies (II and III) of methylprednisolone in acute spinal cord injury. J Spinal Disord 2000;13:185-199.
Gomes JA, Stevens RD, Lewin JJ III, Mirski MA, Bhardwaj A. Glucocorticoid therapy in neurologic critical care. Crit Care Med 2005;33:1214-1224.
Fisher CG, Noonan VK, Smith DE, Wing PC, Dvorak MF, Kwon B. Motor recovery, functional status, and health-related quality of life in patients with complete spinal cord injuries. Spine 2005;30:2200-2207.
Roskams AJ, Tetzlaff W. Directing stem cells and progenitor cells on the stage of spinal cord injury. Exp Neurol 2005;193:267-272.
Alvarez-Buylla A, Seri B, Doetsch F. Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 2002;57:751-758.
Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res 2004;26:151-160.
Bray GM, Villegas-Perez MP, Vidal-Sanz M, Carter DA, Aguayo AJ. Neuronal and nonneuronal influences on retinal ganglion cell survival, axonal regrowth, and connectivity after axotomy. Annals NY Acad Sci 1991;633:214-228.
Taylor JS, Bampton ET. Factors secreted by Schwann cells stimulate the regeneration of neonatal retinal ganglion cells. J Anat 2004;204:25-31.
Dubey N, Letourneau PC, Tranquillo RT. Guided neurite elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp Neurol 1999;158:338-350.
Caroni P, Schwab ME. Codistribution of neurite growth inhibitors and oligodendrocytes in rat CNS: appearance follows nerve fiber growth and precedes myelination. Dev Biol 1989;136:287-295.
Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull 1999;49:377-391.
Okano H. Stem cell biology of the central nervous system. J Neurosci Res 2002, 69:698-707.
Schwab ME. Myelin-associated inhibitors of neurite growth. Exp Neurol 1990;109:2-5.
Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M. Neurotrophins and brain insults. Trends Neuros 1994;17:490-496.
Wang B, Zhang N, Qian KX, Geng JG. Conserved molecular players for axon guidance and angiogenesis. Curr Protein Pept Sci 2005;6:473-478.
Hu B, Nikolakopoulou AM, Cohen-Cory S. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo. Development 2005;132:4285-4298.
Fawcett JW. Spinal cord repair: from experimental models to human application. Spinal Cord 1998;36:811-817.
Zhang N, Yan H, Wen X. Tissue-engineering approaches for axonal guidance. Brain Res Rev 2005;49:48-64.
Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002;418:50-56.
Rathjen J, Rathjen PD. Formation of neural precursor cell populations by differentiation of embryonic stem cells in vitro. Scien World J 2002;2:690-700.
Kelly, S, Bliss, TM, Shah, AK, Sun, GH, Ma, M, Foo, WC, et al. Transplanted human fetal neural stem cells survive, migrate and differentiate in ischemic rat cerebral cortex. PNAS 2004;101:11839-11844.
McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, et al. Human neural stem cell transplants improve motor function in a rat model of Huntington´s disease. J Comp Neurol 2004;475:211-219.
Zhao L-R, Duan W-M, Reyes M, Keene CD, Verfaille CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into ischemic brain of rats. Exp Neurol 2002;174:11-20.
Keene CD, Ortiz-González XR, Jiang Y, Largaespada DA, Verfaille CM, Low WC. Neural differentiation and incorporation of bone marrowderived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant 2003;12:201-213.
Mayani H, Lansdorp PM. Biology of human umbilical cord bloodderived hematopoietic stem/progenitor cells. Stem Cells 1998;16:153-65.
Srour EF, Abonour R, Cornetta K, Traycoff CM. Ex vivo expansion of hematopoietic stem and progenitor cells: are we there yet? J Hematother 1999;8:93-102.
Lansdorp PM. Role of telomerase in hematopoietic stem cells. Ann NY Acad Sci 2005;1044:220-227.
Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992;255:1137-1141.
Leor J, Guetta E, Feinberg MS, Galski H, Bar I, Holbova R, et al. Human umbilical cord blood-derived CD133+ cell enhance function and repair of the infarcted myocardium. Stem Cells 2006;24:772-780.
Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K. Human cord blood-derived cells attain neuronal and glíal features in vitro. J Cell Science 2002;115:2131-2138.
Sun W, Buzanska L, Domanska-Janik K, Salvi RJ, Stachowiak MK. Voltage-ensitive and ligand-gated channels in differentiating neural stemlike cells derived from the nonhematopoietic fraction of human umbilical cord blood. Stem Cells. 2005;23:931-945.
Jeong JA, Gang EJ, Hong SH, Hwang SH, Kim SW, Yang IH, et al. Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Regen Transplan 2004;15:1731-1734.
Walczak P, Chen N, Hudson JE, Willing AE, Garbuzova-Davis SN, Sng S, et al. Do hematopoietic cells exposed to a neurogenic environment mimic properties of endogenous neural precursors? J Neurosci Res 2004;76:244-254.
McGuckin CP, Forraz N, Allouard Q, Pettengell R. Umbilical cord blood stem cells can expand hematopoietic and neuroglíal progenitors in vitro. Exp Cell Res 2004;295: 350-359.
Fan C-G, Zhang Q-J, Tang F-W, Han Z-B, Wang G-S, Han Z-C. Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett 2005;380:322-325.
Coenen M, Kögler G, Wernet P, Brüstle O. Transplantation of human umbilical cord blood-derived adherent progenitors into the developing rodent brain. J Neuropathol Exp Neurol 2005;64:681-688.
Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 2003;12:271-278.
Ortiz-González XR, Keene CD, Verfaille CM, Low WC. Neural induction of adult bone marrow and umbilical cord stem cells. Curr Neurovasc Res 2004;1:207-213.
Temple S, Álvarez-Buylla A. Stem cells in the adult mammalian central nevous system. Curr Op in Neurobiol 1999;9:135-141.
Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999;96:25-34.
Shihabuddin LS, Homer PJ, Ray J, Gage FH. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 2000;20:6727-6735.
Okano H. Stem cell biology of the central nervous system. J Neurosci Res 2002;69:698-707.
Mikami Y, Okano H, Sakaguchi M, Nakamura M, Shimazaki T, Okano HJ, et al. Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery. J Neurosci Res 2004;76:453-465.
Watanabe K, Nakamura M, Iwanami A, Fujita Y, Kanemura Y, Toyama Y, et al. Comparison between fetal spinal-cord-and forebrain-derived neural stem/progenitor cells as a source of transplantation for spinal cord injury. Dev Neurosci 2004;26:275-287.
Nagato M, Heike T, Kato T, Yamanaka Y, Yoshimoto M, Shimazaki T, et al. Prospective characterization of neural stem cells by flow cytometry analysis using a combination of surface markers. J Neurosci Res 2005;80:456-466.
Lang B, Liu HL, Liu R, Feng GD, Jiao XY. Astrocytes of injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience 2004;128:775-783.
Bechade C, Mallecourt C, Sedel F, Vyas S, Triller A. Motoneuronderived neurotrophin-3 is a survival factor for PAX2-expressing spinal interneurons. J Neurosci 2002;22:8779-8784.
Milward EA, Lundberg CG, Ge B, Lipsitz D, Zhao M, Duncan ID. Isolation and transplantation of multipotential populations of epidermal growth factor–responsive, neural progenitor cells from the canine brain. J Neurosci Res 1997;50:862-871.
Faulkner J, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transpl Immunol 2005;12:343-348.
Myckatyn TM, Mackinnon SE, McDonald JW. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury. Transplant Immunol 2004;12:343-358.
Wichterle H, Lieberman I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002;110:385-397.
Shetty AK, Turner DA. Neurite outgrowth from progeny of epidermal growth factor–responsive hippocampal stem cells is significantly less robust than from fetal hippocampal cells following grafting onto organotypic hippocampal slice cultures: effect of brain-derived neurotrophic factor. Neurobiol 1999;38:391-413.
Pfister BJ, Iwata A, Taylor AG, Wolf JA, Meaney DF, Smith DH. Development of transplantable nervous tissue constructs comprised of stretch-grown axons. J Neurosci Methods 2006;153:95-103.
Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, Katoh H, et al. In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal tiing of tranaplantation for spinal cord injury. FASEB J 2005;19:1839-1841.
Vacanti MP, Leonard JL, Dore B, Bonassar LJ, Cao Y, Stachelek SJ, et al. Tissue-engineered spinal cord. Transplant Proc 2001;33:592-598.
Hermanson O, Jepsen K, Rosenfeld MG. N-CoR controls differentiation of neural stem cells into astrocytes. Nature 2002;419:934-939.
Sakaguchi M, Shingo T, Shimazaki T, Okano HJ, Shiwa M, Ishibashi S. et al. A carbohydrate-binding protein, Galectin-1, promotes proliferation of adult neural stem cells. PNAS 2006;103:7112-7117.