2008, Number 3
<< Back Next >>
Med Crit 2008; 22 (3)
Sepsis-induced myocardial dysfunction
Carrillo ER, Carrillo CJR, Carrillo CLD, Vázquez OZY
Language: Spanish
References: 63
Page: 124-130
PDF size: 158.65 Kb.
ABSTRACT
Myocardial dysfunction frequently accompanies severe sepsis and septic shock. Whereas myocardial depression was previously considered a preterminal event, it is now clear that cardiac dysfunction as evidenced by biventricular dilatation and reduced ejection fraction is present in most patients with severe sepsis and septic shock. Myocardial depression exists despite a fluid resuscitation-dependent hyperdynamic state that typically persists in septic shock patients until death or recovery. Cardiac function usually recovers within 7–10 days in survivors. Myocardial dysfunction does not appear to be due to myocardial hypoperfusion but due to circulating depressant factors, including the cytokines tumor necrosis factor alpha and IL-1
β. At a cellular level, reduced myocardial contractility seems to be induced by both nitric oxide-dependent and nitric oxide-independent mechanisms. The present paper reviews both the clinical manifestations and the molecular/cellular mechanisms of sepsis-induced myocardial depression.
REFERENCES
Parrillo JE, Burch C, Shelhamer. A Circulating myocardial depressant substance in humans with septic shock. J Clin Invest 1985;76:1539-1553.
Parillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction and therapy Septic shock in human. Ann Intern Med 1990;113:227-242.
MacLean LD, Mulligan WG, McLean APH, Duff JH. Patterns of septic shock in man: a detailed study of 56 patients. Ann Surg 1967;166:543-562.
Clowes GHA, Vucinic M, Weidner MG. Circulatory and metabolic alterations associated with survival or death in peritonitis. Ann Surg 1966;163:844-866.
Nishijima H, Weil MH, Shubin H, Cavanilles J. Hemodynamic an metabolic studies on shock associated with gram-negative bacteremia. Medicine 1973; 52:287-294.
Weil MH, Nishijima H. Cardiac output in bacterial shock. Am J Med 1978; 64:920-922.
Packman MI, Rackow EC. Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 1983;11:165-169.
Winslow EJ, Loeb HS, Rahimtoola SH, Kamath S, Gunnar RM. Hemodynamic studies and results of therapy in 50 patients with bacteremic shock. Am J Med 1973;54: 421-432.
Krausz MM, Perel A, Eimerl D, Cotev S. Cardiopulmonary effects of volume loading in patients with septic shock. Ann Surg 1977;185:429-434.
Parker SM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and non-survivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 1987;15:923-929.
Parker MM, Suffredini AF, Natanson C, Ognibene FP, ShelhamerJH, Parrillo JE. Responses of left ventricular function in survivors and non-survivors of septic shock. J Crit Care 1989;4:19-25.
Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1984;100:483-490.
Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE. Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock. Chest 1988;93:903-910.
Ellrodt AG, Riedinger MS, Kimchi A, Berman DS, Maddahi J, Swan HJC, Murata GH. Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 1985;110:402-409.
Raper RF, Sibbald WJ, Driedger AA, Gerow K. Relative myocardial depression in normotensive sepsis. J Crit Care 1989;4:9-18.
Jafri SM, Lavine S, Field BE, Thill-Baharozian MC, Carlson RW. Left ventricular diastolic function in sepsis. Crit Care Med 1991;18:709-714.
Munt B, Jue J, Gin K, Fenwick J, Tweeddale M. Diastolic filling in human severe sepsis: an echocardiographic study. Crit Care Med 1998;26:1829-1833.
Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 1997;23:553-560.
Sibbald WJ, Paterson NAM, Holliday RL, Anderson RA, Lobb TR, Duff JH. Pulmonary hypertension in sepsis: measurement by the pulmonary artery diastolic-pulmonary wedge pressure gradient and the influence of passive and active factors. Chest 1978;73:583-591.
Kimchi A, Ellrodt GA, Berman S, Murata GH, Riedinger MS, Swan HJC, Murata GH. Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol 1988;4:945-951.
Schneider AJ, Teule GJJ, Groenveld ABJ, Nauta J, Heidendal GAK, Thijs LG. Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J 1988;116:103-112.
Parker MM, McCarthy KE, Ognibene FP, Parrillo JE. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 1990;97:126-131.
Vincent JL, Reuse C, Frank N, Contempre B, Kahn RJ. Right ventricular dysfunction in septic shock: assessment by measurements of right ventricular ejection fraction using the thermodilution technique. Acta Anaesthesiol Scand 1989;33:34-38.
Baumgartner J, Vaney C, Perret C. An extreme form of hyperdynamic syndrome in septic shock. Intensive Care Med 1984.
Groeneveld ABJ, Nauta JJ, Thijs L. Peripheral vascular resistance in septic shock: its relation to outcome. Intensive Care Med 1988;14:141-147.
Rhodes A, Lamb FJ, Malagon R, Newman PJ, Grounds M, Bennett D. A prospective study of the use of a dobutamine stress test to identify outcome in patients with sepsis, severe sepsis or septic shock. Crit Care Med 1999;27:2361-2366.
Jardin F, Fourme T, Page B. Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest 1999;116:1354-1359.
Morelli A, De Castro S, Teboul JL. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 2005;31: 638-644.
Arlati S, Brenna S, Prencipe L. Myocardial necrosis in ICU patients with acute non-cardiac disease. A prospective study. Intensive Care Med 2000;26:31-37.
Ver Elst KM, Spapen HD, Nam Nguyen D. Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clinical Chemistry 2000; 46:650-657.
Ammann P, Fehr T, Minder EI. Elevation of troponin I in sepsis and septic shock. Intensive Care Med 2001;27: 965-969.
Witthaut R, Busch C, Fraunberger P. Plasma atrial natriuretic peptide and brain natriuretic peptide are increased in septic shock: Impact of interleukin-6 and sepsis-associated left ventricular dysfunction. Intensive Care Med 2003;29:1696-1702.
Rudiger A, Gasser S, Fischler M. Comparable increase of B-type natriuretic peptide and amino-terminal pro-B-type natriuretic peptide levels in patients with severe sepsis, septic shock, and acute heart failure. Crit Care Med 2006;34:2140-2144.
Tung RH, Garcia C, Morss AM. Utility of B-type natriuretic peptide for the evaluation of intensive care unit shock. Crit Care Med 2004;32:1643-1647.
Stamos TD, Soble JS. The use of echocardiography in the critical care setting. Crit Care Clin 2001;17:253-270.
Price S, Nicol E, Gibson DG. Echocardiography in the critically ill: Current and potential roles. Intensive Care Med 2006;32:48-59.
Vignon P, Mentec H, Terre S. Diagnostic accuracy and therapeutic impact of transthoracic and transesophageal echocardiography in mechanically ventilated patients in the ICU. Chest 1994;106:1829-1834.
Cunnion RE, Schaer GL, Parker MM. The coronary circulation in human septic shock. Circulation 1986;73:637-644
Mebazaa A, De Keulenaer GW, Paqueron X. Activation of cardiac endothelium as a compensatory component in endotoxin-induced cardiomiopathy: Role of endothelin, prostaglandins, and nitric oxide. Circulation 2001;104: 3137-3144.
Groeneveld AB, van Lambalgen AA, van den Bos GC. Maldistribution of heterogeneous coronary blood flow during canine endotoxic shock. Cardiovasc Res 1991;25: 80-88.
Solomon MA, Correa R, Alexander HR. Myocardial energy metabolism and morphology in a canine model of sepsis. Am J Physiol 1994;266:757-768.
Dhainaut JF, Huyghebaert MF, Francois MJ. Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 1987;75: 533-541.
Brealey D, Brand M, Hargreaves I. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002;360:219-223.
Watts JA, Kline JA, Thornton LR. Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol 2004;36:141-150.
Suliman HB, Welty-Wolf KE, Carraway MS. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 2004;64:279-288.
Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev 2005;6:248-261.
Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 an UCP3. Cell Metab 2005;2:85-93.
Murray AJ, Anderson RE, Watson GC. Uncoupling proteins in human heart. Lancet 2004;364:1786-1788.
Pathan N, Hemingway CA, Alizadeh AA. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet 2004;363:203-209.
Haque R, Kan H, Finkel MS. Effects of cytokines and nitric oxide on myocardial E-C coupling. Basic Res Cardiol 1998;93:86-94.
Kumar A, Thota V, Dee L. Tumor necrosis factor and interleukin are responsible for in vitro myocardial cell depression induced by human septic shock. J Exp Med 1996;183:949-958.
Shepered RE, Lang CH, McDonough KH. Myocardial adrenergic responsiveness after lethal and no lethal doses of endotoxin. Am J Physiol Heart Circ Physiol 1987; 252:410-416.
Hahn PY, Wang P, Tait SM. Sustained elevation in circulating catecholamine levels during polymicrobial sepsis. Shock 1995;4:269-273.
Tang C, Liu MS. Internal externalization followed by internalization of beta-adrenergic receptors in rat heart during sepsis. Am J Physiol Regul Integr Comp Physiol 1996;270:254-263.
Matsuda N, Hattori Y, Akaishi Y. Impairement of cardiac B-adrenoreceptor cellular signaling by decreased expression of GSalfa in septic rabbits. Anesthesiology 2000; 93:1465-1473.
Bohm M, Kirchmayr R, Gierschik P. Increase of myocardial inhibitory G-proteins in catecholamine-refractory septic shock or in septic multiorgan failure. Am J Med 1995;98:183-186.
Zhong J, Hwang TC, Adams HR. Reduced L-type calcium current in ventricular myocites from endotoxemic guinea pigs. Am J Physiol Heart Cir Physiol 1997;273:2312-2324.
Wu L, Liu MS. Altered ryanodine receptor of canine cardiac sarcoplasmic reticulum and its underlying mechanism in endotoxic shock. J Surg Res 1992;53:82-90.
Yokoyama T, Vaca L, Rossen RD. Celular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 1993;92: 2303-2312.
Wu L, Ji Y, Dong LW. Calcium uptake by sarcoplasmic reticulum is impaired during the hypodynamic phase of sepsis in the rat Heart. Shock 2001;15:49-55.
Favory R, Lancel S, Marchetti P. Endotoxin-induced myocardial dysfunction: evidence for a role of sphingosine production. Crit Care Med 2004;32:495-501.
Wu L, Tang C, Liu MS. Altered phosphorylation and calcium sensivity of cardiac myofibrillar proteins during sepsis. Am J Physiol Regul Integr Comp Physiol 2001; 281:408-416.
Gao CQ, Sawicki G, Suarez-Pinzon WL. Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res 2003;57:426-433.