2003, Number 2
<< Back Next >>
Plasticidad y Restauración Neurológica 2003; 2 (2)
It´s possible the brain restoration? Biological mechanism of brain plasticity
Aguilar RF
Language: Spanish
References: 76
Page: 143-152
PDF size: 182.15 Kb.
ABSTRACT
Evidence of functional recovery after brain damage is known empirically since many centuries ago. The neuronal plasticity can refers to the adaptative adjustments of the central nervous system (CNS) and the brain capacity to diminish the effects of the lesions by mean of to modify structural and functional changes in its internal or external milieu. Knowledge of the neural bases of function and dysfunction facilitates and understanding of the cognitive, behavioral, motor and sensory changes encountered in the brain damaged patient, that permitted leading to the development of effective rehabilitation procedures, and adequate environmental and psychosocial factors.
The pathological process of the CNS affecting the corticospinal and the subcorticospinal tracts, beside cerebellar, spinal, visual, language another system, however, trough the brain plasticity have ability to modify its own structural organization and functioning.
The end of the 20th century promises to introduce important insights into the mechanism of secondary neuronal damage, and de same time we are able to understand this can we reverse the process of the cell death. The new technology to permit evaluation of the validity and reliability of outcome measures, for in-vivo study of brain structure and physiologic functions, such studies are computed tomography, magnetic resonance imaging, single photon emission computed tomography, positron emission tomography, electroencephalography, transcranial magnetic stimulation.
In this article mentioned the postulate mechanisms of reorganization of function such as unmasking, the development of extra synaptic receptors, sprouting, trophy factors, synapsins, neurotransmitters, diaschisis and the regeneration of nerve fibers and cells.
The clinical manifestation of brain plasticity are observed mainly after prenatal, neonatal, or childhood cerebral damage. In the adulthood neuronal plasticity is less comparative children, nevertheless these plastic changes may be found and any age, and functional gains continue by year after the lesion.
The expression of neural plasticity and the capacity of neurons to change their function, chemical profile, or structure are the new conceptual framework for the contribution in the brain restoration.
REFERENCES
Galaburda AM. Introduction to Special Issue: Developmental plasticity and recovery of function. Neuropsychologia 1990;28:515-6.
O’Leary DD, Ruff NL, Dick RH. Development, critical period plasticity, and adults organizations of mammalian somatosensory systems. Current Biology 1994; 4:535-44.
Cotman CW, Nieto - Sampedro M. Cell biology of synaptic plasticity. Science 1984;225: 1287 - 94.
Lenn NJ. Brain plasticity and regeneration. AJNR 1992; 13: 505 - 15.
Bach y Ruta P, Wicab-Bach y Rita E. Biological and psychological factors in recovery from brain damage in humans. Canadian Journal of Psychology 1990;44: 148-65.
Ramachandran VS. Behavioral and magnetoencephalography correlates of plasticity in the adults human brain. Proceedings of the National Academy of Sciences 1993;90:10413-20.
Kennard MA. Cortical reorganization of the motor function. Studies on series of monkeys of various ages from infancy to maturity. Archives of Neurology and psychiatry 1942;48:227-40.
Aguayo AJ, David S. Richardson PM. Axonal elongation in peripheral and central nervous system transplants. Adv Cell Neurobiol 1982;3:215 - 34.
Aguilar Rebolledo F, Mateos Gómez H. Transposición y trasplante de epiplón a cerebro y a médula espinal. Investigación experimental, conocimientos actuales y perspectivas de aplicación clínica. Gac Med Mex 1989; 125: 325 - 9.
Bach y Rita P. Brain plasticity as a basis for recovery of function in humans. Neuropsychologia 1990;28:547-54.
Aguayo AJ. Richardson PM. Penry M. Transplantation of neurons and sheath cells –a tool for the study of regeneration. En: Nicholls JG, editor. Repair and regeneration of the nervous system. Life Sciences Research Report 24, Berlín: Springer, Verlag: 1982.p. 91 - 106.
Lipton SA, Katz SB. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. TINS 1989;12:265-70.
Pfrieger FW. Barreas BA. Synaptic efficacy enhanced by glial cell in vitro. Science 1987; 277 : 1684 - 6.
Bach y Rita P. Receptor plasticity and volume transmission in the brain: emerging concepts with relevance to neurologic rehabilitation. J Neuro Rehab 1990;4:121-8.
Cotman CW, Nieto-Sampedro M. Progress in facilitating the recovery of function after central nervous system trauma. IN F. Nottebohm (ED.), Hope for a new Neurology. New York: New York Academy of Sciences 1985:83-104.
Collins RC, Olney JW, Lothman EW. Metabolic and pathological consequences of focal seizures. In Ward AA, Penry JK, Purpura DP (eds.): Epilepsy. New York, Raven Press 1983, pp 87-107.
Boyeson MG, Bach y Rita P. Determinants of brain plasticity. J Neuro Rehab 1989;3:35-57.
Fingers S, Wolft C. The Kennard principle before Kennard. The early history of age and brain lesions. Arch Neurol 1988; 45: 1136 - 42.
Hicks SP, D’Amato CJ. Motor sensory and visual behavior after hemispherectomy in newborn and mature rats. Exp Neurol 1970: 29:416 - 438.
Sarnat HB. Do the corticospinal and corticobulbar tracts mediate functions in the human newborn? Can J Neurol Sci 1989; 16: 157 - 160.
Leonard CT. Goldberger ME. Consequences of damage to the sensorimotor cortex in neonatal and adultscats. II. Maintenance of exuberant projections. Dev Brain Res 1987, 32: 15 - 30.
Anyder RD, Hata SK Brann BS, et al. Subcortical visual function in the newborn. Pediatr Neurol 1990; 6: 333.
Buchwald JS. Comparison of plasticity in sensory and cognitive processing system. Clin Perinat 1990,17: 57 - 66
Ono K, Shimada M, Yamano T. Reorganization of the corticoespinal tract following neonatal unilateral cortical ablation in rats. Brain Dev 1990; 12: 226 - 236.
Ommaya AK,Pons TP. Reorganization in primary and secondary somatosensory cortex (SII) after complete deafferentation of the hand in Rhesus monkey Soc for Neurosc Abstracts 1991;17:842
Pons TP, Garraghty PE. Ommaya AK, et al. Massive cortical reorganization after sensory deafferentiation in adult macaques. Science 1991; 252: 1857 - 1860.
McConell SK, Ghosh A, Shatz CJ. Sub plate neurons pioneer the first axon pathway from the cerebral cortex. Science 1989; 245: 978 - 984.
Lois C. Alvarez - Buylla A. Long - distance neuronal migration in the adult mammalian brain. Science 1994;264:1145 - 1148.
Singer W. Development and plasticity of cortical processing architectures. Science 1995; 270: 758- 764.
Calford MB, Tweedale R. Interhemispheric transfer of plasticity in the cerebral cortex. Science 1990. 244: 805 - 7.
Nelson KB, Ellenberg JH. Children who ‘outgrew’ cerebral palsy Pediatrics 1982; 69: 529 - 536.
Topka H. Cohen LG. Cole RA, Hallet M. reorganization of corticoespinal pathways following spinal cord injury. Neurology 1991; 41: 1276 - 1238.
Weiller C. Chollet F. Friston KJ, et al. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992; 31: 463 – 472.
Pascual - Leone A, Grafman J. Hallet M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 1994; 263: 1287 - 1289.
Chollet F. Di Piero V. Wise RJS, et al. The functional anatomy of motor recovery after stroke in humans: a study with positron emission topography. Ann Neurol 1991; 29. 63 - 71.
Sarnat HB. Role of human fetal ependyma. Pediatr Neurol 1992; 8: 163 – 178.
Lenn NJ. Brain plasticity and regeneration. AJNR 1992; 13: 505- 515.
Cotman CW, Nieto-Sampedro M. Progress in facilitating the recovery of function after central nervous system trauma. IN F. Nottebohm (ED.), Hope for a new Neurology. New York: New York Academy of Sciences 1985:83-104
Boyeson MG, Bach y Rita P. Determinants of brain plasticity J Neuro Rehab 1989;3:35-57.
Greengarde P, Voltorta F, Czernik AJ. Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 1993; 259: 780 - 785.
Kamiya H, Zucker RS. Residual Ca2+ and short - term synaptic plasticity. Nature 1994; 371: 603 - 606.
Zang SJ, Jackson MB. GABA - activated chloride channels in secretory nerve endings. Science 1993; 259: 431 - 434.
Huerta PT. Lisman JE. Heightened synaptic plasticity of hyppocampal CAI neurons during a cholinergically induced rhythmic state. Nature 1993; 364. 723- 725.
Sdhof TC, Czdernik AJ, Kao HT, et al. Synapsins: mosaics of shared and individual domains in a family of synapsins vesicle phosphoproteins. Science 1989;245:1474-80.
Kolodkin AL, Matthes DJ, Goodman CS. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 1993;75:1389-99
Bach y Rita P. Receptor plasticity and volume transmission in the brain: emerging concepts with relevance to neurologic rehabilitation. J Neurol Rehabil 1990; 4: 121 - 8
Cragg BG. The development of synapses in kitten visual cortex during visual deprivation. Exp Neurol 1975; 46: 445-451.
Coleman PD, Riesen AH: Environmental effects on cortical dendritic fields. I. Rearing in the dark. Am J Anat 1968; 102: 363-374.
Zohari E. Celebrini S. Britten KH, Newsome WT. Neuronal plasticity that underlies improvement in perceptual performance. Arch Neurol 1981;38:191-4.
Bach y Rita P. Receptor plasticity and volume transmission in the brain: emerging concepts with relevance to neurologic rehabilitation. J Neuro Rehab 1990;4:121-8.
Merzenich MM, Jenkins WM, Johnston P. et al. Temporal processing deficits of language - learning impaired children ameliorated by training Science 1996; 271: 77 - 81.
Dobrea GM, Unnerstall JR, Rao MS. The expression of CNTF message and immunoreactivity in the central and peripheral nervous system of the rat. Brain Res of Dev Brain Res 1992;66:209-19.
Thoenen H. The changing scene of neurotrophic factor. Trends Neurosci 1991;14:165-70.
Pettit MJ, Schwarz HD. Receptive field reorganization in dorsal column nuclei during temporary denervation. Science 1993;262:2054-6.
Castro AJ. Projections of the superior cerebellar peduncle in rats and the development of new connections in response to neonatal hemicerebellectomy. J Comp Neurol 1978; 178: 611 - 628.
Molinari M. Bentivoglio M. Granato A, et al. Increased collaterization of the cerebellothalamic pathway following neonatal hemicerebellectomy. Brain Res 1986; 327: 1 - 10.
Caroni P, Sabio T, Schwab ME. Central Nervous System regeneration: Oligodendrocytes and myelin as non-permissive substrates for neurite growth. Prog Brain Res 1988;78:363-70
Feeney DM, Baron JC. Diaschisis, Stroke 1986; 17: 817 - 30
Lipton SA, Katz SB. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. TINS 1989;12:265-70.
Marren S: Long term potentiation in the amygdale: a mechanism for emotional learning and memory. Trends Neurosci, 22(12):561-567, 1999.
Martinez Jl, Derrick BE: Long–term potentiation and learning. Annu Rev Psychol,1996;47:173-203.
Weisel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye close on cortical unit responses in Kittens. J Neurophysiol 1965; 28:1029 - 92.
Chow KL, Steward DL. Reversal of structural and functional effects of long-term visual deprivation. Exp Neurol 1972; 34: 409 - 33
Aguilar RF. Mecanismos de restauración neurológica después del daño cerebral. En: Aguilar - Rebolledo F. Editor. Avances en la restauración del sistema nervioso. México: Vicova Editors; 1994.p. 31 - 44.
Coleman PD, Riesen AH: Environmental effects on cortical dendritic fields. I. Rearing in the dark. Am J Anat 1968; 102: 363-374.
Cragg BG. The development of synapses in kitten visual cortex during visual deprivation. Exp Neurol 1975; 46: 445-451.
Lewis TL, Maurer D, Brent HP. Effect on perceptual development of visual deprivation during infancy. Br J Ophthalmol 1986;70:214-20.
Assaf AA. The sensitive period transfer of fixation after occlusion for strabismus amblyopia. Br J Ophthalmol. 1982;70:66-4
Bach y Rita P. Bach y Rita EW. Factores biológicos y psicológicos en la recuperación del daño cerebral en los humanos. En: Aguilar - Rebolledo F, compilador. Avances en la restauración del sistema nervios. México: Vicova Editores; 1994.p. 489 - 509.
Van Heertum RL, Miller SH, Mosesson RE. Spect brain imaging in neurologic disease. Radiology Clinics of North America, 1993;31:881-997.
Bach y Rita P. Potencial biológico de los tejidos cerebrales en restaurar su función. En: Aguilar RF, editor Avances en la restauración del sistema nervioso. México: Vicova Editores; 1994.p. 45-63.
Romero - Apis D. Pérdida del ojo fijador en ambliopía adulta. Anal Soc Mex Oftal 1982;56:445-52.
Penfield W. Perot P. “The brain’s record of auditory and visual experience. A final summary and discussion” Brain 1983; 86: 595 - 696.
Wall PD. Mechanisms of plasticity of connection following damage in adult mammalian nervous systems. In: P. Bach - y - Rita(ed), Recovery of Function: Theoretical Considerations for Brain Injury Rehabilitation. Bern: Hans Huber: 1980 pp 91-105.
Collins RC, Olney JW, Lothman EW. Metabolic and pathological consequences of focal seizures. In: Ward AA, Penry JK, Purpura DP (eds.): Epilepsy. New York, Raven Press 1983, pp 87-107.
Smith A, Sugar O: Development of above normal language and intelligence 21 years after left hemispherectomy. Neurology 1975;25:813-18.