2006, Number 3
<< Back Next >>
Med Int Mex 2006; 22 (3)
Intra-class coefficient correlation vs Pearson correlation of capillary glycemia by reflectometry and plasmatic glycemia
Esquivel MCG, Velasco RVM, Martínez RCE, Barbachano RE, González ÁG, Castillo RCE
Language: Spanish
References: 28
Page: 165-171
PDF size: 252.03 Kb.
ABSTRACT
Background: Bedside blood glucose quantitative measurements with reflectometry in uncontrolled diabetic patients give a high correlation with r
p from 0.97 to 0.98, which is thought to have a great clinical utility. This has been the concept during the last years; however the simple correlation of Pearson (r
p), with bivariated distribution is used to evaluate agreement among continuous numeric variables, but this does not measure the possible systematic bias, the advisable one is the variance analysis when the variables are numeric with the intra-class coefficient correlation (CCI).
Objectives: To assess and to contrast r
p and CCI in two samples the glucose measurements by reflectometry and plasmatic glucose.
Patients and methods: In a prospective, blinded, crossover contrasted study two samples were included with 18 and 151 subjects each. It was measured the capillary glycemia, by reflectometry and by venopuncture with self-analyzer with the glucose oxidase-peroxidase method. Descriptive analysis was used, as well as test of Kolmogorov-Smirnov (K-S) for distribution determination. The analysis was done with r
p, IC 95% z
r and CCI with variance analysis ANOVA IC 95%. Statistical package: SPSS V 8.0. Microsoft Excel 2000.
Results: We obtained the following results in the pilot sample r
p = 0.9063 IC 95% z
r (0.839-0.942) and CCI = 0.8853 IC 95% (0.7203-0.9555), F =16.447 p = 0.0000. Correlation for the sample of 151 with r
p = 0.9797 IC 95% z
r (0.954-0.984). Intra-class coefficient correlation (CCI) = 0.9776 IC 95% (0.9693-0.9837).
Conclusions: This study shows the advantage of using and detecting the systematic bias with CCI instead of r
p for agreement between reflectometry and plasmatic glycemia quantified as continuous numeric variables.
REFERENCES
Fajardo-Gutiérrez A, Yamamoto-Kimura LT, Garduño-Espinoza J, Hernández-Hernández DM, Martínez-García MC. Consistencia y validez de una medición en la investigación clínica pediátrica, evaluación y su interpretación. Bol Med Hosp Infant Mex 1991;48:367-81.
Fleiss JL. The measurement of interrater agreement. In: Statistic methods for rates and proportions. 2nd ed. New York: John Wiley and Sons, 1981;pp:212-36.
Milton JS. Regresión y correlación. En: Milton JS, editor. Estadística para biología y ciencias de la salud. 3a ed. Madrid: McGraw-Hill Interamericana, 2001;pp:407-28.
Finnerup NB, Gyldensted C, Nielsen E, et al. MRI in chronic spinal cord injury patients with and without central pain. Neurology 2003;61:1569-75.
Solnica B, Naskalski JW, Sieradzki J. Analytical performance of glucometers used for routine self-monitoring of diabetic patients. Clin Chim Acta 2003;331(1-2):29-35.
Daniel WW. Regresión y correlación simple. En: Daniel WW, editor. Bioestadística: base para el análisis de las ciencias de la salud. 3a ed. México: Uthea Noriega Editores, 1999;pp:506-9.
Argimón-Pallás JM, Jiménez-Villa J. Plan general de una investigación. Capítulo 2. En: Argimón-Pallás JM, Jiménez-Villa J, editores. Métodos de investigación aplicados a la atención primaria de la salud. Barcelona: Doyma, 1991;p:11.
Argimón-Pallás JM. Tratado de epidemiología clínica. Madrid: EMISA, 1995;pp:10-20.
Bartko JJ. The intraclass correlation coefficient as a measure of reliability. Psychol Rep 1966;19:3-11.
Fleiss JL, Cohen J. The equivalence of weigthed Kappa and intraclass correlation coeficient as measures of reliability. Educ Psychol Meas 1973;33:613-9.
Burdock EI, Fleiss JL, Hardesty AS. A new view of interobserver agreement. Pers Psychol 1963;16:373-84.
Velasco-Rodríguez VM, Martínez-Ordaz VA, Roíz-Hernández J, Huazano- García F, Nieves-Renteria A. Muestreo y tamaño de muestra. Una guía practica para personal que realiza investigación. Buenos Aires: e-libro.net, 2003.
Ceron-Díaz UW. Errores en las mediciones en la unidad de terapia. En: Esponda-Prado JG, Sierra-Unzueta AW, Cerón-Díaz UW. Síndromes cardiopulmonares en el paciente grave. México: McGraw Hill Interamericana, 2001;pp:133-55.
Prieto L, Lamarca R, Casado A. La evaluación de la fiabilidad en las observaciones clínicas: el coeficiente de correlación intraclase. Med Clin (Barc) 1998;110:142-5.
Esquivel-Molina CG, Aguirre-Díaz A, Macias-Carrillo A, Velasco-Rodríguez VM, Martínez-Ordaz VA. Concordancia del diagnóstico radiológico en neumología. Med Int Mex 2003;19(3):131-6. Fe de erratas. Med Int Mex 2003;19(4):267.
Esquivel-Molina CG, González-Ávila G, Madero-Fernández del Castillo MA, Velasco-Rodríguez VM. Variabilidad interobservador de la medición de glucemia semicuantitativa en el departamento de urgencias de un hospital general. Revista de Endocrinología y Nutrición 2003;11(3):112-9.
Berger K, Kase C, Buring JE. Interobserver agreement in the classification of stroke in the Physicians’ Health Study. Stroke 1996;27(2):238-42.
Siegel S. Estadística no paramétrica: aplicada a las ciencias de la conducta. Capítulo 9. En: Las medidas de correlación y sus pruebas de significación. 3a ed. México: Trillas, 1990.
Perelman RH, Gutcher GR, Engle MJ. Comparative analysis of four methods for rapid glucose determination in neonates. Am J Dis Child 1982;136:1051-3.
Conrad PD, Sparks JW, Osberg I, Abrams L, Hay WW. Clinical application of a new glucose analyzer in the neonatal intensive care unit: comparison with other methods. J Pediatrics 1989;114:281-7.
Kabadi UM, O’Conell KM, Johnson J, Kabadi M. The effect of recurrent practice at home on the acceptability of capillary blood glucose readings. Accuracy of self blood glucose testing. Diabetes Care 1994;17(10):1110-23.
Guthie RA, Guthie D, Hinnem D. Self monitoring of glucose: an important adjunt to diabetes therapy. Compr Ther 1986;12(1): 62-66.
American Diabetes Association. Bedside blood glucose monitoring in hospitals. Diabetes Care 2003;26(S1):S119.
Bland M, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.
Luiz RR, Costa JL, Kale PL, Werneck GL. Assessment of agreement of a quantitative variable: a new graphical approach. J Clin Epidemiol 2003;56(10):963-7.
Molinero LM. Errores de medida en variables numéricas correlación y concordancia. Agosto 2001.http://www.seh-lelha.org/pdf/concor1.pdf.
Dombret B, Matthijs S, Sabzevar MM. Interexaminer reproducibility of ordinal and interval-scaled plaque indices. J Clin Periodontol 2003;30(7):630-5.
Torres X, Arroyo S, Araya S, de Pablo J. The Spanish version of the Quality-Of-Life in Epilepsy inventory (QOLIE-31): Translation, validity, and reliability. Epilpesia 1999;40(9):1299-311.