2006, Number 4
<< Back Next >>
Rev Mex Neuroci 2006; 7 (4)
Oxidative stress and neuronal death. A biomolecular vision
Almaguer GD Almaguer MLE
Language: Spanish
References: 60
Page: 330-337
PDF size: 87.94 Kb.
ABSTRACT
The mechanisms by means of which cells death take place in different neurodegenerative diseases, still remain in partial darkness in spite of the intense investigations carried out in the last few years. The more recent discoveries have show that oxidative stress is an important phenomenon that can be part of the machinery that is activated in sufferings like Huntington disease, Alzheimer disease, Parkinson disease, and spinocerebellar ataxias. Here we shown in a didactic way, fundamental aspects that should be known to have a basic idea of processes related with alterations in apoptotic cell death and an inadequate redox balance. Also, here we describe some ways by which the main cell reactive species are formed, and the antioxidant systems by which cells are protected against oxidative damage.
REFERENCES
Sayre LM, Zelazco DA, Harris PLR, Perry G, Salomon RG, Smith MA. 4-Hidroxynonenal-derived advanced lipic peroxidation and products are increased in Alzheimer´s disease. J Neurochem 1997; 68: 2092-7.
Perry G, Castellani RJ, Hirai K, Smith MA. Reactive oxygen species mediate cellular damage in Alzheimer disease. Journal of Alzheimer´s Disease 1998; 1: 45-55.
Martínez A. Anatomía patológica de la enfermedad de Huntington. Rev Esp Patol 2002; 35(4): 517-28.
Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nature Medicine 2004: S10-S517.
Zhang Y, Wang H, Li J, Jimenez DA, Levitan ES, Aizenman E, Rosenberg PA. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-Lipoxygenase activation. The Journal of Neuroscience 2004; 24(47): 10616–27.
Ivanova E, Ivanov B. Mechanisms of the extracellular antioxidant defend. Experimental Pathology and Parasitology 2000; 4: 49-59.
Butterfield DA, Beverly J, La Fontaine MA. Brain oxidative stress in animal models of accelerated againg and the age-related neurodegenerative disorders, Alzheimer´s disease and Huntington´s disease. Current Medical Chemistry 2001; 8: 815-28.
Velásquez MP, Prieto GB, Contreras CP. El envejecimiento y los radicales libres. Ciencias 2004; 75: 36-43.
Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 1992; 32: 522-7.
Bobiers A, Chance B. The generation mitochondrial of hydrogen peroxide. Biochem J 1973; 134: 704-16.
Flint BM. Energetics in the pathogenisis of neurodegenerative diseases. Trends Neurosci 2000; 23: 298-304.
López A, Miranda M, Hernández J, Castillo C, Benedito JL. Glutatión peroxidasa (GSH-PX) en las patologías asociadas a deficiencias de selenio en rumiantes. Arch Me Vet 1997; 29: 171-80.
Castillo C, Benedito JL, Alonso LM, Miranda M, Hernández J. Importancia del estrés oxidativo en el ganado vacuno: en relación con el estado fisiológico (preñez y parto) y la nutrición. Arch Med Vet 2001; 33(1).
Nohl H, Jordan W. The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 1986; 138: 533–9.
Benzi G, Moretti A. Age and peroxidative stress related modifications of the cerebral enzymatic activities linked to mitochondria and the Glutathione System. Free Rad Biol Med 1995; 19: 77-101.
Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep 1997; 17: 3–8.
González F, Castellano B, González H. Estrés oxidativo en las neurodegeneraciones. Rev Neurol 1999; 28(5): 504-11.
Schon AE, Manfredi G. Neuronal degeneration and mitocondrial dysfunction. J Clim Invest 2003; 111: 303-12.
Linden J. Purinergic System. En: Siegel G. Basic Neurochemistry. 6 Ed. Philadelphia: Lippincott-Raven Publishers; 1999.
Morrison RT. Química orgánica. Tomo 1. Edición Revolucionaria; 1987.
Blasco C. Tesis de doctorado. Importancia del estrés oxidativo en la diferencia de la longevidad entre machos y hembras. Universidad de Valencia; 2003. I.S.B.N: 84-370-5825-2.
Fridovich I. Advances in enzymology and related areas of molecular biology. Meister A I 1986; 58: 61-97.
Fridovich I. Superoxide anion radical, superoxide dismutases, and related matters. J Biol Chem 1997; 272(30): 18515-17.
Mattson MP. Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptative plasticity. Tends Neurosc 1988; 21(22): 53-7.
Coyle JT, Puttfarcken P. Oxidative stress, glutamate and neurodegenerative disorders. Science 1994; 262: 689-94.
Kenneth J, Smith RK, Paul A. Felts. Demyelination: the role of reactive oxygen and nitrogen species brain. Pathology 1999; 9: 69-92.
Wallace DA. Nitric oxide and nitric oxide synthase in Huntington´s disease. Journal of Neuroscience Research 2001; 64: 99-107.
Viant D, Fonseca C, Ileana C. Clavel. Radicales libres y su papel en la homeostasia neuronal. MEDISAN 1999; 3(3): 5-11.
Olanow CW. A radical hyphotesis for neurodegeneration. TINS 1993; 16: 439-44.
Olanow CW. A rationale for monoamine oxidase. Inhibition as neuroprotective therapy for Parkinson’s disease. Mov Disord 1993; 8: 17.
Hassan HM, Fridovich I. Regulation of the synthesis of superoxide dismutase in escherichia coli. J Biol Chem 1977; 252: 7667-72.
Cooper AJ, Kristal BS. Multiple roles of glutathione in the central nervous system. Biol Chem 1997; 378: 793-802.
Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. The Journal of Experimental Biology 2004; 207: 3221-31.
Mondola P, Bifulco M, Seru R, Annella T, Ciriolo MR, Santillo M. Presence of CuZn superoxide dismutase in human serum lipoproteins. FEBS Letters 2000; 467: 57-60.
Oury TD, Ho YS, Piantadosi CA, Crapo JD. Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc Natl Acad Sci 1992; 89: 9715-19.
Ischiropoulos H. Effect of aging on pulmonary superoxide dismutases. Mech Ageing Dev 1990; 52: 11-26.
Olalla LM, Manuel JM. Radicales libres de oxígeno y enzimas antioxidantes (online). http://www.encuentros.uma.es/encuentros56/radicales.html
Suzy A, Comhair A, Erzurum SC. Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol 2002; 283: L246-L255.
Forstrom JW, Zakowski JJ, et al. Identification of the catalitic site of the rat liver glutathione peroxidase as selenocysteine. Biochemistry 1978; 17: 2639-44.
Ketterer B. Detoxication reactions of glutathione and glutathione transferases. Xenobiotica 1986; 16: 957-73.
Ren B, Huang W, Akesson B, Ladenstein. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution. J Mol Biol 1997; 268: 869-85.
Céspedes E, Hernández I, Llópiz N. Enzimas que participan como barreras fisiológicas para eliminar los radicales libres: catalasa. Rev Cubana Invest Biomed 1996; 15: 23-8.
Tolbert NE, Essner E. Microbodies: peroxisomes and glyoxysomes. J Cell Biol 1981; 3: 271s-83s.
Prasad TK, Anderson MD, Stewart CR. Acclimation, hydrogen peroxide, abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol 1994; 105(2): 619-27.
Lo Bello M, Nuccetelli M, Caccuri AM, Stella L, Parker MW, et al. Human glutathione transferase P1-1 and nitric oxide carriers. The Journal of Biological Chemistry 2001; 276(45): 42138–45.
Dringen R. Metabolism and functions of glutathione in brain. Progress in Neurobiology 2000; 62: 649-71.
Robert M, Friedlander MD. Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 2003; 348: 1365-75.
Liu X, Zou H, Slaughter C, Wang XD. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997; 89: 175-84.
Roseto A, Brenner C. Apoptosis o la muerte celular programada. Arch Argen Pediatr 1999; 97(4): 253-75.
Kanduc D, Mittelman A, Serpico R, et al. Cell death: apoptosis versus necrosis. Int J Oncol 2002; 21: 165-70.
Jordán J. Apoptosis: muerte celular programada. OFFARM 2003; 22(6): 100-6.
Venereo GJ. Daño oxidativo, radicales libres y antioxidantes. Rev Cubana Med Milit 2002; 31(2): 126-33.
Reylli PM, Burkley GB. Tissue injury by free radicals and other toxic oxygen metabolites. Br J Surg 1990; 77: 1324-5.
Burdon RH, Gill V, Rice-Evans C. Cell proliferation and oxidative stress. Free Radic Res Commun 1989; 7: 49-59.
Pérez DL, Muguercia HL. Medicina crítica y estrés oxidativo. Rev Cubana Invest Biomed 2000; 19(3): 196-8.
Rodrigo J, Alonso D, Fernández AP, Serrano J, López JC, Encinas JM, Fernández P, Castro S, Peinado MA, Pedrosa JA, Richard A, Martínez M, Santacana M, Bentura ML, Uttenthal L. El óxido nítrico: síntesis, neuroprotección y neurotoxicidad. Anales. (online).1998. http://www.cfnavarra.es/salud/anales/textos/vol23/n2/colab.html.
Espulgues JV. NO as a signalling molecule in the nervous system. British Journal of Pharmacology 2002; 135: 1079-95.
Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405-13.
Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulphide/glutathione couple. Free Radical Biology & Medicine 2001; 30(11): 1191–212.
Segura T, Galindo MF, Rallo-Gutiérrez B, et al. Dianas farmacológicas en las enfermedades neurodegenerativas. Rev Neurol 2003; 36(11): 1047-57.