2006, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2006; 9 (1)
Atomic distribution and morphology of the micelles in sols precursors of boehmite, bismuthinite, hydrotalcite and rutile
Bokhimi X, Vega-González M, Morales A
Language: Spanish
References: 32
Page: 12-18
PDF size: 401.76 Kb.
ABSTRACT
Sols of boehmite, bismuthinite, hydrotalcite and rutile were prepared. The micelles of the sols were characterized by using X-ray powder diffraction and transmission electron microscopy. For all sols, the micelles were nanocapsules with diameters between 20 and 100 nm and a shell thickness between 3 and 4 nm, where the atoms formed clusters that ordered with a non-translational symmetry. When the micelles interacted each other, the atoms in the capsules shells changed their ordering from the one in the atomic clusters into the one that corresponds to the crystalline structure of the phase from which the sol was precursor. The interaction between the nanocapsules produced their aggregation to build porous three-dimensional structures, or onedimensional structures that transformed into nanotubes, nanobars, or into three-dimensional nets that eventually
form a gel.
REFERENCES
Wakai, H. et al. Ultrahigh density HfO2 nanodots for flash memory scaling. Jap. J. Applied Phys. 45, 2459-2462 (2006).
Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F. & Tour, J.M. Directional control in thermally driven single-molecule nanocars. Nano Letters 5, 2330-2334 (2005).
Buehler, T.M. et al. Single-shot readout with the radio-frequency single-electron transistor in the presence of charge noise. Appl. Phys. Letters 86, 143117 (2005).
Bardeen, J. & Brattain, W.H. The transistor, a semi-conductor triode. Phys. Rev. 74, 230-231 (1948).
Pugh, E.W., Critchlow, D.L., Henle, R.A. & Russel, L.A. Solid state memory development at IBM. IBM J. Res. Develop. 25, 585-602 (1981).
Fleming, S.J. Roman Glass: Reflections on cultural change (University of Pennsylvania museum of archeology and anthropology, Filadelfia, 1999).
Bokhimi, X. et al. Dependence of boehmite thermal evolution on its atom bond lengths and crystallite size. J. Solid State Chem. 161, 319-326 (2001).
Tsakalakos, T. Nanostructures: Synthesis, Functional Properties and Applications (Kluwer Academic Publishers, Massachusets, 2003).
Rao, C.N.R., Müller, A. & Cheetham, A.K. The chemistry of nanomaterials: Synthesis, properties and applications (Wiley, Nueva York, 2004).
Rehm, B.H.A. Microbial Bionanotechnology: Biological selfassembly systems and biopolymer-based nanostructures (Taylor & Francis, Londres , 2006).
Ranquin, A., Versées, W., Meier, W., Jan Steyaert, J. & Van Gelder, P. Therapeutic nanoreactors: Combining chemistry and biology in a novel triblock copolymer drug delivery system. Nano Letters. 5, 2020-2024 (2005).
Varpness, Z., Peters, J.W., Young, N. & Douglas, T. Biomimetic synthesis of a H2 catalyst using a protein cage architecture. Nano Letters. 5, 2306-2309 (2005).
Livage, J. Sol-gel synthesis of heterogeneous catalysts from aqueous solutions. Catalysis Today 41, 3-19 (1998).
McBain, J.W. & Salmo, C.S. Colloidal electrolytes. Soap solutions and their constitution. J. Amer. Chem. Soc. 42, 426-460 (1920).
Livage, J. Sol-gel process. Enc. Inorg. Chem. 7, 3836-3857 (2000).
Brinker, C.J. & Scherer, G.W. Sol-gel science (Academic Press, Boston, 1990).
Zhang, Y., Xie, Q., Yin, F. & Yao, S. In situ monitoring of generation and precipitation of ferric hydroxide sol with a piezoelectric quartz crystal impedance analyzer. J. Colloid. Interface Sci. 236, 282-289 (2001).
Rodríguez-Carbajal, J. “Laboratoire Leon Brilloin (CEA-CNRS)” France. E-mail juan@llb.saclay.cea.fr
Kara, M. & Kurki-Suonio, K. Symmetrized multipole analysis of orientational distributions. Acta Cryst. A 37, 201-210 (1981).
Bokhimi, X., Valente, J. & Lima, E. Synthesis and characterization of nanocapsules with shells made up of Al13 tridecamers. J. Physical Chem. B 109, 22222-22227 (2005).
Warren, B.E. X-ray diffraction (Addison-Wesley, Massachusetts, 1969).
Bragg, W.H. & Bragg, W.L. The reflection of X-rays by crystals. Proc. Royal Soc. A 88, 428-433 (1913).
Debye, P. Zerstreuung von Röntgenstrahlen. Ann. Physik 46, 809- 823 (1915).
Johansson, G. On the crystal structure of the basic sulfate 13Al2O3. 6SO4. xH2O. Ark. Kemi 20, 321-342 (1963).
Singhal, A. & Keefer, K.D. A study of aluminum speciation in aluminum chloride solution by small angle X-ray scattering and 27Al NMR. J. Mater. Res. 9, 1973-1983 (1994).
Kohatsu, I. & Wuensch, B.J. The crystal structure of Aikinite, PbCuBiS3. Acta Cryst. B 27, 1245-1252 (1971).
Young, R.A. The Rietveld Method (Oxford University Press, Nueva York, 1993).
Bokhimi, X., Morales, A. & Valente, J.S. Sulfate ions role in boehmite crystallization in a sol made with aluminum tri-secbutoxide and 2-propanol. J. Phys. Chem. B. submitted, February (2006).
Bokhimi, X., Sánchez-Valente, J. & Pedraza, F. Crystallization of sol-gel boehmite via hydrothermal annealing. J. Solid State Chem. 166, 182-190 (2002).
Weissbuch, I., Popovitz-Biro, R., Lahav, M. & Leiserowitz, L. Understanding and control of nucleation, growth, habit, dissolution and structure of two- and three-dimensional crystals using ‘tailor-made’ auxiliaries. Acta Cryst. B 51, 115- 148 (1995).
Zhang, Z. & Pinnavaia, T.J. Mesostructured -Al2O3 with a lathlike framework morphology. J. Amer. Chem. Soc. 124, 12294-12301 (2002).
Toledo, J.A. et al. Synthesis of highly porous aluminas mediated by cationic surfactant: Structural and textural properties. J. Mater. Res. 20, 2947-2954 (2005).