2006, Number 1
<< Back Next >>
Rev Biomed 2006; 17 (1)
Micronucleated erythrocytes in preterm newborns in relation to maternal pathology
Batista-González CM, Corona-Rivera JR, Gómez-Meda BC, Zamora-Pérez AL, Ramos-Ibarra ML, Zúńiga-González GM
Language: English
References: 31
Page: 11-16
PDF size: 50.88 Kb.
ABSTRACT
Introduction. The micronucleus assay detects DNA damage. Certain pathologies that are associated with free radical production may increase the frequency of micronucleated erythrocytes (MNE). Here, we have investigated whether pathologies that are associated with the formation of free radicals lead to an increase in embryonic MNE frequencies during pregnancy.
Materials and Methods. We have used the in vivo micronuclei test on peripheral blood erythrocytes to determine MNE frequencies in preterm newborns (PN) from apparently healthy mothers. MNE frequencies were compared with those obtained from the peripheral blood from PN born to mothers with diabetes mellitus (DM), systemic arterial hypertension (SAH) or vaginal infection (VI). Blood samples were grouped according to gender, maternal pathology, and maternal folic acid intake.
Results. In the peripheral blood of PN born to mothers with pathologies the MNE and micronucleated polychromatic erythrocytes (MNPCE) frequencies were higher than in the PN born to mothers without any pathological condition (P‹0.02). In the PN born to mothers with DM both the MNE and MNPCE frequencies were elevated (P‹0.01), whereas in the PN born to mothers with VI only the MNE frequency was elevated (P‹0.03). The MNE frequency in PN whose mothers suffered SAH showed an increase, although the MNE frequency was reduced in female PN and in PN whose mothers took folic acid (P›0.05). The results were evaluated by means of a U-Mann Whitney test.
Discussion. Our results show that the frequency of MNE increased in PN born to mothers with pathologies that involved an increase in free radical production.
REFERENCES
1.- Schmid W. The micronucleus test. Mutat Res 1975; 31: 9-15.
2.- Heddle JA, Cimino MC, Hayashi M, Romagna F, Shelby M, Tucker J, et al. Micronuclei as an index of cytogenetic damage: past, present and future. Environ Mol Mutagen 1991; 18: 277-91.
3.- Schmezer P, Pool BL, Lefevre PA, Callander RD, Ratpan F, Tinwell H, et al. Assay-specific genotoxicity of n-nitrosodibenzylamine to the rat liver in vivo. Environ Mol Mutagen 1990; 15: 190-7.
4.- Suzuki Y, Shimizu H, Nagae Y, Fukumoto M, Okonogi H, Kadokura M. Micronucleus test and erythropoiesis: effect of cobalt on the induction of micronuclei by mutagens. Environ Mol Mutagen 1993; 22: 101-6.
5.- Heddle J, Lue C, Saunder E, Benz R. Sensitivity to five mutagens in Fanconi's anemia as measured by the micronucleus method. Cancer Res 1978; 38: 2983-8.
6.- Corazza G, Ginaldi L, Zoli G, Frisoni M, Lalli G, Gasbarrini G, et al. Howell-Jolly body counting as a measure of splenic function, a reassessment. Clin Lab Haematol 1990; 12: 269-75.
7.- Zúńiga G, Torres-Bugarín O, Ramírez-Muńoz MP, Ramos A, Fanti-Rodríguez E, Portilla E, et al. Spontaneous micronuclei in peripheral blood erythrocytes from 35 species. Mutat Res 1996; 369: 123-7.
8.- Zúńiga-González G, Torres-Bugarín O, Luna-Aguirre J, González-Rodríguez A, Zamora-Perez A, Gómez-Meda BC, et al. Spontaneous micronuclei in peripheral blood erythrocytes from 54 animal species (mammals, reptiles and birds): Part Two. Mutat Res 2000; 467: 99-103.
9.- Zúńiga-González G, Torres-Bugarín O, Zamora-Pérez A, Gómez-Meda BC, Ramos-Ibarra ML, Martínez-González S, et al. Differences in the number of micronucleated erythocytes among young and adult animals including humans. Spontaneous micronuclei in 43 species. Mutat Res 2001; 494: 161-7.
10.- Zúńiga-González G, Ramírez-Muńoz MP, Torres-Bugarín O, Pérez-Jiménez J, Ramos-Mora A, Zamora-Pérez A, et al. Induction of micronuclei in the domestic cat (Felis domesticus) peripheral blood by colchicine and cytocine-arabinoside. Mutat Res 1998; 413: 187-9.
11.- Zúńiga-González G, Torres-Bugarín O, Ramos-Ibarra ML, Zamora-Pérez A, Gómez-Meda BC, Ventura-Aguilar AJ, et al. Variation of micronucleated erythrocytes in peripheral blood of Sciurus aureogaster in relation to age: An increment of micronucleated polychromatic erythrocytes after the administration of colchicine. Environ Mol Mutagen 2001; 37: 173-7.
12.- Schlegel R, MacGregor J, Everson R. Assesment of cytogenetic damage by quantitation of micronuclei in human peripheral blood erythrocytes. Cancer Res 1986; 46: 3717-21.
13.- Williams WJ, Beutler E, Erslev AJ, Lichtman MA. Hematology. 4 ed. USA: McGraw-Hill; 1990. p. 308-698.
14.- Ramírez-Muńoz MP, Zúńiga G, Torres-Bugarín O, Portilla E, García-Martínez D, Ramos A, et al. Evaluation of the micronucleus test in peripheral blood erythrocytes by use of the splenectomized model. Lab Anim Sci 1999; 49: 418-20.
15.- Zúńiga G, Torres-Bugarín O, Ramírez-Muńoz MP, Delgado-Lamas JL, De Loza-Saldańa R, Cantú JM. Micronucleated erythrocytes in splenectomized patients with and without chemotherapy. Mutat Res 1996; 361: 107-12.
16.- Torres-Bugarín O, Zamora-Perez AL, Esparza-Flores A, López-Guido B, Feria-Velasco A, Cantú JM, et al. Eritrocitos micronucleados en nińos esplenectomizados con y sin quimioterapia. Bol Med Hosp Infant Mex 1999; 56: 212-7.
17.- Sakamaki H, Akazawa S, Ishibashi M, Izumino K, Takino H, Yamasaki H, et al. Significance of glutathione-dependent antioxidant system in diabetes-induced embryonic malformations. Diabetes 1999; 48:1138-44.
18.- arda S, Yilmaz M, Öztok U, Çakir N, Karakaya AE. Assessment of DNA strands breakage by comet assay in diabetic patients and the role of antioxidant supplementation. Mutat Res 2001; 490: 123-9.
19.- Gracy RW, Talent JM, Kong Y, Conrad CC. Reactive oxygen species: the unavoidable environmental insult? Mutat Res 1999; 428:17-22.
20.- Ortiz GG, Reiter RJ, Zúńiga G, Melchiorri D, Sewerynek E, Pablos MI, et al. Genotoxicity of paraquat: micronuclei induced in bone marrow and peripheral blood are inhibited by melatonin. Mutat Res 2000; 464: 239-45.
21.- Laufler MV, Retel J. Constrasting effects of SH-compounds on oxidative DNA damage: repair and increase of damage. Mutat Res 1993; 295: 1-10.
22.- Yoshie Y, Ohshima H. Synergistic induction of DNA strands breakage by cigarette tar and nitric oxide. Carcinogenesis 1997; 18: 1359-63.
23.- Schraufstatter IU, Hyslop PA, Hinshaw DB, Spragg RG, Sklar LA, Cochrane ChG. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. Proc Natl Acad Sci 1986; 83: 4908-12.
24.- Levario-Carrillo M, Sordo M, Rocha F, González-Horta C, Amato D, Ostrosky-Wegman P. Micronucleus frequency in human umbilical cord lymphocytes. Mutat Res 2005; 586: 68-75.
25.- Zúńiga-González G, Gómez-Meda BC, Zamora-Perez AL, Ramos-Ibarra ML, Batista-González CM, Espinoza-Jiménez S, et al. Induction of micronuclei in proestrus vaginal cells from colchicine- and cyclophosphamide-treated rats. Environ Mol Mutagen 2003; 42: 306-10.
26.- Gómez-Meda BC, Zúńiga-González GM, Zamora-Perez A, Ramos-Ibarra ML, Batista-González CM, Torres-Mendoza BM. Folate supplementation of cyclophosphamide-treated mothers diminishes micronucleated erythrocytes in peripheral blood of newborn rats. Environ Mol Mutagen 2004; 44: 174-8.
27.- Ramos-Remus C, Dorazco-Barragán G, Aceves-Ávila FJ, Alcaraz-López F, Fuentes-Ramírez F, Michel-Diaz J, et al. Genotoxicity assessment using micronuclei assay in rheumatoid arthritis patients. Clin Exp Rheumatol 2002; 20: 208-12.
28.- Sarti P, Fiori PL, Forte E, Rappelli P, Teixeira M, Mastronicola D, et al. Trichomonas vaginalis degrades nitric oxide and expresses a flavorubredoxin-like protein: a new pathogenic mechanism? Cell Mol Life Sci 2004; 61:618-23.
29.- MacGregor JT, Wehr CM, Hiatt RA, Peters B, Tucker JD, Langlois RG, et al. 'Spontaneous' genetic damage in man: evaluation of interindividual variability, relationship among markers of damage, and influence of nutritional status. Mutat Res 1997; 377: 125-35.
30.- Smithells RW, Shepard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, et al. Possible prevention of neural tube defects by periconceptional vitamin supplementation. Lancet 1980; 1: 339-40.
31.- Blount BC, Mack NM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: Implications for cancer and neuronal damage. Proc Natl Acad Sci 1997; 94: 3290-95.