2006, Number 6
<< Back Next >>
salud publica mex 2006; 48 (6)
Lactobacillus casei ssp. rhamnosus enhances non specific protection against Plasmodium chabaudi AS in mice
Martínez-Gómez F, Ixta-Rodríguez O, Aguilar-Figueroa B, Hernández-Cruz R, Monroy-Ostria A
Language: English
References: 23
Page: 498-503
PDF size: 119.68 Kb.
ABSTRACT
Objective. To evaluate the capacity of
Lactobacillus casei ssp.
rhamnosus to enhance resistance against
Plasmodium chabaudi chabaudi AS.
Material and Methods. NIH mice were IP injected with viable
lactobacillus casei seven days (LC1 group) or 7 and 14 days (LC2 group) before the challenge (day 0) with
Plasmodium chabaudi parasitized red blood cells (pRBC). Control mice were inoculated with pRBC only. When parasitaemia was resolved, naive mice were injected with spleen cells from each group. The parasitaemia was measured. Nitric oxide (NO˙) in serum was determined.
Results. Mice from the LC1 group presented a reduction in parasitaemia, with a prepatent period of five days, parasitaemia lasted 11 days, and the peak was (36.3 % pRBC) on the 12
th day post-infection. Mice from the LC2 group showed a prepatent period of five days, parasitaemia lasted eight days, and the peak (30 % pRBC) was of on the 11
th day. In the control, the prepatent period was three days, the parasitaemia lasted 15 days, and the peak (51% pRBC) was on day nine. Mice inoculated with spleen cells from the LC2 group showed a prepatent period of 21 days, parasitaemia lasted seven days, and the peak (13.5% pRBC) was on the 26th day.
Conclusion. L. casei enhanced nonspecific resistance to
P. chabaudi, as indicated by longer prepatent periods, reduced parasitaemia, and reduction in the viability of the parasites recovered from the spleen of infected mice, along with high concentrations of NO˙ in serum.
REFERENCES
Perdigón G, Maldonado-Galdeano C, Valdez JC, Medici M. Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr 2002; 56: S21-S26.
Gill H S. Stimulation of the immune system by lactic cultures. Int Dairy J 1998; 8: 535-534.
Christensen H, Frokiaer H, Pestka J J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 2002;168: 171-178.
Perdigón G, Vintiñi E, Álvarez S, Medina M, Medici M. Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J Dairy Sci 1999; 82: 1108-1114.
Bautista-Garfias CR, Ixta O, Orduña M, Martínez F, Aguilar B, Cortés A. Enhancement of resistance in mice treated with Lactobacillus casei: Effect on Trichinella spiralis infection. Vet Parasitol 1999; 80: 25-260.
Matsuzaki T. Immuno modulation by treatment with Lactobacillus casei strain Shirota. Int J Food Microbiol 1998; 41: 133-140.
Ogawa M, Shimizu K, Nomoto K, Tanaka R, Yamasaki S, Takeda T, et al. Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microbiol 2001;68: 135-140.
Perdigón G, Nader de Macías ME, Álvarez S, Oliver G, de Ruiz-Holgado AA. Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. J Dairy Res 1990; 57: 255-264.
Hudault S, Liévin V, Bernet-Camard MF, Servin AL. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl Environ Microbiol 1997; 63: 513-518.
Wagner R D, Pierson C, Warner T, Dohnalek M, Farmer J, Roberts L, et al. Biotherapeutic effects of probiotic bacteria on candidiasis in immuno-deficient mice. Infect Immun 1997; 65: 4165-4172.
Isolauri E, Joensu J, Suomalainen H, Loumala M, Vesikari T. Improved immunogenicity of oral Dx RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine 1995;13: 310-312.
Bautista-Garfias CR, Ixta-Rodríguez O, Martínez-Gómez F, López MG, Aguilar-Figueroa BR. Effect of viable or dead Lactobacillus casei organisms given orally to mice on resistance against Trichinella spiralis infection. Parasite 2001; 8: 226-228.
Kato I, Tanaka K, Yokokura T. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-g by mouse splenocytes. Int J Immunopharmacol 1999; 21:121-131.
Takagi A, Matsuzaki T, Sato M, Nomoto K, Morotom M, Yokokura T. Enhancement of natural killer cytotoxity delayed murine carcinogenesis by a probiotic microorganism. Carcinogenesis 2001; 22: 599-605.
Su Z, Stevenson M. Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect Immun 2000; 68: 4399-4406.
Rockett K A, Awburn MM, Cowden WB, Clark I A. Killing of Plasmodium falciparum in vitro by nitric oxide derivatives. Infect Immun 1991; 59: 3280-3283.
Fristche G, Larcher C, Schennach H, Weiss G. Regulatory interactions between iron and nitric oxide metabolism for immune defense against Plasmodium falciparum infection. J Infect Dis 2001; 183:1388-1394.
Korhonen R, Korpela R, Saxelin M, Mäki M, Kankaanranta H, Moilanen E. Induction of nitric oxide by probiotic Lactobacillus rhamnosus GG in J774 macrophages and human T84 intestinal epthelial cells. Inflammation 2001; 25: 223-237.
Taylor-Robinson AW, Phillips RS, Severn A, Moncada S, Liew FY. The role of TH1 and Th2 cells cells uin a rodent malaria infection. Science 1993; 260:1931-1934.
Phillips RS, Mathers KM, Taylor-Robinson AW. T cells in immunity to Plasmodium chabaudi chabaudi operation and regulation of differente pathways of protection. Res Immunol 1994; 145: 406-412.
Jacobs P, Radzioch D, Stevenson MM. Nitric oxide expression in the spleen, but not in the liver, correlates with to blood-stage malaria in mice. J Immunol 1995; 155: 5306-5313.
Legorreta-Herrera M, Fiallos-Leon C, Barrón-Cedillo L, Martínez-Gómez F, Cuevas-Foster M, Favila-Castillo L. Anti-Thy-1 treated and irradiated spleen cells from BALB/cX C57BL/6)F1 mice infected with Plasmodium chabaudi chabaudi can transfer protection into irradiated hosts. Parasite Immunol 1993; 15: 143-151.
Mota MM, Brown KN, Holder AA, Jarra W. Acute Plasmodium chabaudi chabaudi malaria infection induces antibodies which bind to the surfaces of parasitized erythrocytes and promote their phagocytosis by macrophages in vitro. Infect Immun 1998; 66: 4080-4086.