2006, Number 5
<< Back Next >>
salud publica mex 2006; 48 (5)
Determinant factors for malaria transmission on the coast of Oaxaca state, the main residual transmission focus in Mexico
Hernández-Avila JE, Rodríguez MH, Betanzos-Reyes AF, Danis-Lozano R, Méndez-Galván JF, Velázquez-Monroy OJ, Tapia-Conyer R
Language: English
References: 35
Page: 405-417
PDF size: 257.73 Kb.
ABSTRACT
Objective. The purpose of this study was to investigate the influence of demographic, socioeconomic and ecological factors in malaria transmission in the most important residual transmission focus in Mexico, located in the state of Oaxaca.
Material and Methods. The extension of the focus was determined by a spatial and time analysis of the distribution of malaria cases in the state between 1998 and 1999 using a Geographical Information System. A malaria transmission intensity index (MTII) was constructed based on the total number of cases during the study period and the duration and frequency of transmission outbreaks within the villages. The relationship between local determinants and malaria transmission intensity was investigated using multinomial and ordered logistic models.
Results. The distribution of villages according to their MTII was: 325 high, 341 medium, 142 low and 717 with no transmission. Localities of high MTII were associated with areas having a tropical climate with summer rains and low water evaporation. Most high MTII villages were located in elevations between 200 and 500 m above sea level, in the area around Pochutla City. The amount of temporary streams in the neighborhood of localities had a highly significant positive association with the MTII. Distance to roads was only significant in the high malaria MTII stratum.
Conclusions. The main factors determining malaria transmission in the focus are related to good conditions for the breeding of mosquito vectors. The existence of short-range population movements around Pochutla, the main economically active city in the area, indicates the necessity to implement a system of epidemiological surveillance to halt the dispersion of new outbreaks.
REFERENCES
Pan American Health Organization 2005. Area of health Analysis and Information Systems (AIS). Health Situation in the Americas: Basic Indicators 2005. Washington, DC: PAHO, 2005.
Tellaeche AM. La evolución y situación actual del paludismo en México. In: Kumate J, Martínez-Palomo A, eds. A Cien Años del Descubrimiento de Ross. El Paludismo en Mexico. Mexico, DF: El Colegio Nacional, 1998; 209-218.
Chanon KE, Méndez-Galván JF, Galindo-Jaramillo JM, Olguín-Bernal H, Borja-Aburto VH. Cooperative actions to achieve malaria control without the use of DDT. Int J Hyg Environ Health 2003; 206: 387-394.
Molineaux L, Muir DA, Spencer HC, Wernsdorfer WH. The epidemiology of malaria and its measurement. In: Wernsdorfer WH, McGregor I, eds. Malaria, principles and practice of Malariology. Edinburgh: Churchill-Livingstone 1988;2: 999-1089.
Mendis K, Sina BS, Morchesine P, Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 2001; 64: 97-106.
Geenwood B. The microepidemiology of malaria and its importance to malaria control. Trans R Soc Trop Med Hyg 1989;83:S25-S29.
Focks DA, Brenner RJ, Chadee DD, Trosper JH. The use of spatial analysis in the control and risk assessment of vector-borne diseases. Am Entomol 1999;45:173-183.
Pope KO, Rejmankova E, Savage HM, Arredondo-Jimenez JI, Rodriguez MH, Roberts DR. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico. Ecol Appl 1994;4:81-90.
Beck LR, Rodriguez MH, Dister SW, Rodriguez AD, Rejmankova E, Ulloa A et al. Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. Am J Trop Med Hyg 1994;51:271-280.
Kitron U. Landscape ecology and epidemiology of vector-borne diseases: Tools for spatial analysis. J Med Entomol 1998;35:435-445.
Snow RW, Peshu N, Forster D, Bomu G, Mitsanze E, Ngumbao E, et al. Environmental and entomologic risk factors for the development of clinical malaria among children on the Kenyan coast. Trans R Soc Trop Med Hyg 1998;92:381-385.
Ghebreyesus TA, Haile M, WittenKH, Getachew A, Yohannes M, Lindsay S, et al. Household risk factors for malaria among children in the Ethiopean highlands. Trans R Soc Trop Med Hyg 2000;94:17-21.
Snow RW, Gouws E, Omumbo JA, Rapsoda BA, Graig MH, Tanser FC, et al. Models to predict the intensity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya. Trans R Soc Trop Med Hyg 1998;92:601-606.
Kleinschmidt I, Omumbo JA, Briët O, van de Giesen N, Sogoba N, Mensah N, et al. An empirical malaria distribution map for West Africa. Trop Med Int Health 2001;6:779-786.
Craig MH, Snow RW, le Sueur D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 1999;15:105-111.
Rogers DJ, Randolf SE, Snow RW, Hay SI. Satellite imagery in the study and forecast of malaria. Nature 2002;415:710-715.
Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present and future. Lancet Infect Dis 2004;4:327-336.
Star J, Estes J. Geographic Information Systems. An Introduction. Englewood Cliffs, New Jersey: Prentice-Hall, 1990.
Hosmer DW, Lemeshow S. Applied Logistic Regression. New York: John Wiley and Sons, 1989.
McCullag P, Nelder JA. Generalized to line models 2nd edition. New York: Chapman and Hall, 1989.
Brown H, Prescott R. Applied Mixed Models in Medicine, New York: John Wiley and Sons, 1999.
Kleinschmidt I, Sharp BL, Clarke GPY, Curtis B, Fraser C. Use of Generalized linear mixed models in the spatial analysis of small-area malaria incidence rates in KwaZulu Natal, South Africa. Am J Epidemiol 2001; 153:1213-1221
Moran PAP. The interpretation of statistical maps. J R Stat Soc 1948; Series B 10: 243-251.
Moran PAP. Notes on continuous stochastic phenomena. Biometrika 1950; 37: 17-23.
Cressie N, Hawkins DM. Robust estimation of the variogram. Math Geol 1980; 12: 115-125.
Bailey CT, Gatrel CA. Interactive Spatial Analysis. Essex, England: Longman, 1995.
Kennedy-Kalafatis S. Reliability-adjusted disease maps. Soc Sci Med 1995;41:1273-1287.
Bruce-Chwatt LJ. Essential Malariology. New York: John Willey and Sons, 1985.
Savage HM, Rejmankova E, Arredondo-Jimenez JI, Roberts DR, Rodriguez MH. Limnological and Botanical characterization of larval habitats for two primary malarial vectors, Anopheles albimanus and An. pseudopunctipennis, in coastal areas of Chiapas State, Mexico. J A Mosq Control Assoc 1990; 6: 612-620.
Villareal-Treviño C, Arredondo-Jimenez JI, Rodriguez MH. Bionomía de los principales vectores del paludismo en México. En: A Cien Años del Descubrimiento de Ross. El Paludismo en México. Kumate J, Martínez-Palomo A. eds. Mexico DF: El Colegio Nacional, 1998;149-165.
Rodriguez AD, Rodriguez MH, Hernandez JE, Dister SW, Beck LR, Rejmankova E, et al. Landscape surrounding human settlements and Anopheles albimanus Wiedemann (Diptera: Culicidae) abundance in southern Chiapas, Mexico. J Med Entomol 1996; 33: 39-48.
Beck LR, Rodriguez MH, Dister SW, Rodriguez AD, Washino RK, Roberts DR, et al. An assessment of a remote sensing-based model for predicting malaria transmission risk in villages of Chiapas, Mexico. Am J Trop Med Hyg 1997; 56: 99-106.
Fernández-Salas I, Roberts DR, Rodríguez MH, Marina-Fernández-CF. Bionomics of larval populations of Anopheles pseudopunctipennis in the Tapachula foothills area, southern Mexico. J A Mosq Control Assoc 1994;10:477-486.
Manguin S, Roberts DR, Peyton EL, Fernandez-Salas I, Barreto M, Fernandez-Loayza R, et al. Biochemical systematics and population genetic structure of Anopheles pseudopunctipennis, vector of malaria in Central and South America. Am J Trop Med Hyg 1995; 53: 362-377.
Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. 2nd edition. Oxford: Oxford University Press, 1991.