2006, Number 4
<< Back Next >>
salud publica mex 2006; 48 (4)
Acceptability and perceived side effects of insecticide indoor residual spraying under different resistance management strategies
Rodríguez AD, Penilla RP, Rodríguez MH, Hemingway J, Trejo A, Hernández-Avila JE
Language: English
References: 20
Page: 317-324
PDF size: 127.37 Kb.
ABSTRACT
Objective. To assess household acceptability and perceived side effects of residual indoor pyrethroid (PYR), carbamate and organophosphate insecticides sprayed by annual rotation (ROT), spatial mosaic (MOS), and a single insecticide (DDT or PYR) in communities of the coastal plain of Chiapas, Mexico.
Material and Methods. A questionnaire to assess the acceptability and perceived side effects of indoor insecticides was administered to one member of 30% of the families in eight villages of Chiapas. The association of different insecticide treatments with their responses was evaluated (Chi-square). The intensity of side effects indicated under different treatments was compared in an ordered logistic model, using a severity index as the response variable.
Results. Insecticide spraying as a probable cause of symptoms was identified by 2.1% of interviewees. A significantly high percentage of persons with blurred vision, dizziness, sneezing, coughing, numbness, watery eyes, and itching lived in villages under MOS and ROT and a high severity index was significantly associated with ROT treatment. Reduction of mosquito bites and cockroaches were the perceived main benefits, and most villagers that perceived no benefits lived in DDT treated villages. Most of the interviewees welcomed spraying (83.7%), but the smell and having to remove furniture from houses were the main arguments against it.
Conclusions. Acceptability correlated with insecticide spray coverage, although the most frequent suggestion for improvement was to increase the understanding of the objectives of spraying in the communities. The frequency of side effects was low, but higher in localities where a combination of insecticides was applied. This is a limitation for the use of this type of resistance management strategy in public health.
REFERENCES
Rafatjah H. The problem of resurgent bed-bug infestation in malaria eradication programmes. J Trop Med Hyg 1971;74:53-56.
Njunwa KJ, Lines JD, Magesa SM, Mnzava AE, Wilkes TJ, Alilio M, et al. Trial of pyrethroid impregnated bednets in an area of Tanzania holoendemic for malaria. Part 1. Operational methods and acceptability. Acta Trop 1991;49:87-96.
Baker EL Jr, Warren M, Zack M, Dobbin RD, Miles JW, Miller S, et al. Epidemic malathion poisoning in Pakistan malaria workers. Lancet 1978;1:31-34.
de Zulueta J, Mujtaba SM, Shah IH. Malaria control and long-term periodicity of the disease in Pakistan. Trans R Soc Trop Med Hyg 1980;74:624-632.
Moretto A. Indoor spraying with the pyrethroid insecticide lambda-cyhalothrin: effects on spraymen and inhabitants of sprayed houses. Bull World Health Organ 1991;69:591-594.
Chester G, Sabapathy NN, Woollen BH. Exposure and health assessment during application of lambda-cyhalothrin for malaria vector control in Pakistan. Bull World Health Organ 1992;70:615-619.
Bouma MJ, Nesbit R. Fenitrothion intoxication during spraying operations in the malaria programme for Afghan refugees in North West Frontier Province of Pakistan. Trop Geogr Med 1995;47:12-14.
Charlwood JD, Alecrim WD, Fe N, Mangabeira J, Martins VJ. A field trial with lambda-cyhalothrin (ICON) for the intradomiciliary control of malaria transmitted by Anopheles darlingi Root in Rondonia, Brazil. Acta Trop 1995;60:3-13.
Richter ED, Chuwers P, Levy Y, Gordon M, Grauer F, Marzouk J, et al. Health effects from exposure to organophosphate pesticides in workers and residents in Israel. Isr J Med Sci 1992;28:584-597.
Ames RG, Howd RA, Doherty L. Community exposure to a paraquat drift. Arch Environ Health 1993;48:47-52.
Le Quesne PM, Maxwell UC, Butterworth ST. Transient facial sensory symptoms following exposure to synthetic pyrethroids: a clinical and electrophysiological assessment. Neurotoxicol 1980;2:1-11.
He F, Sun J, Han K, Wu Y, Yao P, Wang S, et al. Effects of pyrethroid insecticides on subjects engaged in packaging pyrethroids. Br J Ind Med 1988;45:548-551.
Tabashnik BE. Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J Econ Entomol 1989;82:1263-1269.
Penilla RP, Rodriguez AD, Hemingway J, Torres JL, Arredondo-Jimenez JI, Rodriguez MH. Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med Vet Entomol 1998;12:217-233.
Scarborough ME, Ames RG, Lipsett MJ, Jackson RJ. Acute health effects of community exposure to cotton defoliants. Arch Environ Health 1989;44:355-360.
Srivastava HC, Kant R, Bhatt RM, Sharma SK, Sharma VP. Epidemiological observations on malaria in villages of Buhari PHC, Surat, Gujarat. Indian J Malariol 1995;32:140-152.
Zar JH. Biostatistical analysis. 2nd edition. Englewood Cliffs: Prentice-Hall, 1984.
McCullag P, Nelder JA. Generalized linear models. 2nd edition. New York: Chapman and Hall, 1989.
Rodríguez AD, Penilla RP, Rodríguez MH, Hemingway J, Betanzos AF, Hernandez-Avila JE. Knowledge and beliefs about malaria transmission and practices for vector control in Southern Mexico. Salud Publica Mex 2003;45:110-116.
Sampath TRR, Yadav RS, Sharma VP, Adak T. Evaluation of lambdacyhalothrin-impregnated bednets in a malaria endemic area of India. Part I. Implementation and acceptability of the trial. J Am Mosq Control Assoc 1998;14:431-436.