2007, Number 2
<< Back
Bol Med Hosp Infant Mex 2007; 64 (2)
Neurorehabilitation: a diagnostic and therapeutic method to prevent brain lesion sequelaes in newborn and infants
Porras-Kattz E, Harmony T
Language: Spanish
References: 33
Page: 125-135
PDF size: 193.11 Kb.
ABSTRACT
Neurohabilitation is an early therapeutic and diagnostic method to prevent brain lesion sequelaes in newborn and infants in risk of brain injury that was developed in Hungary by Katona. It is based on the view of brain plasticity in young nervous system and considers the repetition of certain therapeutic exercises based on activation of the elementary sensorimotor patterns that are human specific. These elementary sensorimotor patterns are very similar to ultimate (adult) motor activities. The elementary sensorimotor functions are activated by the gravity through the vestibular system and are under the control of the basal gangliae, the reticular system and the paleocerebellum. The method needs a very active family participation, but offers the advantage that can be used in any pediatric service and doesn´t require specialized materials.
REFERENCES
Katona F. Clinical neurodevelopment diagnosis and treatment. En: Zelazo PR, Barr RG, editores. Challenges to developmental paradigms: implications for theory and treatment. New Jersey: Lawrence Erlbaum, Hillsdale; 1989. p. 167-87.
www.healthsystem.virginia.edu
Katona F. A kóros agyérés természete, korai diagnosztikája és korai teápiája. En: Klinikai fejlödésneurológia. Budapest: Medicina Könyvkiadó Rt.; 1999. p. 71-85.
Zuluaga-Gómez JA. Estimulación, intervención y habilitación funcional. En: Neurodesarrollo y estimulación. Colombia: Editorial Médica Panamericana; 2001. p. 255.
Katona F, Berényi M. How early is too late? Clin Neurosci. 2001; 54: 196-206.
Katona F, Berényi M. Clinical developmental neurology. Diagnostic programs. Clin Neurosci. 2001; 54: 142-55.
Katona F, Berényi M. Das Konzept der Neurohabilitation nach Katona. Der Kinderarzt 24. Jg Nr.1992; 2: 195-205.
Bhutta AT, Anand KJS. Vulnerability of the developing brain: neuronal mechanisms. Clin Perinatol. 2002; 29: 357-72
Rakic P. Images in neuroscience. Brain development VI: radial migration and cortical evolution. Am J Psychiatry. 1998; 155: 1150-1.
Gould E, Cameron HA. Early NMDA receptor blockade impairs defensive behavior and increases cell proliferation in the dentate gyrus of developing rats. Behav Neurosci. 1997; 111: 49-56.
Komuro H, Rakic P. Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J Neurobiol. 1998; 37: 110-30.
Yen L, Sibley JT, Constantine-Paton M. Analysis of synaptic distribution within single retinal axonal arbors after chronic NMDA treatment. J Neurosci. 1995; 15: 4712-25.
Komuro H, Rakic P. Modulation of neuronal migration by NMDA receptors. Science. 1993; 260: 95-7.
Rabinowck T, de Courten-Myers GM, Peteto JM, Xi G, de los Reyes E. Human cortex development: estimates of neuronal number indicate mayor loss late during gestation. Neuropathol Exp Neurol. 1996; 55: 320-8.
Dikranian K, Ishimaur MJ, Tenkova T. Apoptosis in the in vivo mammalian forebrain. Neurobiol Dis. 2001; 8: 359-79.
Miller MW, al-Ghoul WM. Number of neurons in the developing principal sensory nucleus of the trigeminal nerve: enhanced survival of early-generated neurons over late-generated neurones. J Comp Neurol. 1993; 330: 491-501.
Spreafico R, Frassoni C, Arcelli P, Selvaggio M, de Biasi S. In situ labeling of apoptotic cell death in the cerebral cortex and thalamus of rats during development. J Comp Neurol. 1995; 363: 281-95.
Ferrer I, Bernet E, Soriano E, del Río T, Fonseca M. Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience. 1990; 39: 451-8.
Finlay BL, Slatter M. Local differences in the amount of early cell death in neocortex predicts adult local specializations. Science. 1983; 219: 1349-51.
Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by lutathione depletion. J Neurosci. 1998; 18: 6241-53.
Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res. 2001; 50: 553-62.
Nagata N, Saji M, Ito T, Ikeno S, Takahashi H, Terakawa N. Repetitive intermittent hypoxia-ischemia and brain damage in neonatal rats. Brain Dev. 2000; 22: 315-20.
Despres P, Frenkiel MP, Ceccaldi PE, Duarte-Dos Santos C, Deubel V. Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses. J Virol. 1998; 72: 823-9.
Anand KJS. Pain, plasticity, and premature birth: a prescription for permanent suffering? Nat Med. 2000; 6: 971-3.
Gray L, Watt L, Blass EM. Skin-to-skin contact is analgesic in healthy newborns. Pediatrics. 2000; 105: e14.
Liu D, Diorio J, Tannenbaum B. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997; 277: 1659-62.
Liu D, Caldji C, Sharma S, Plotsky PM, Meaney MJ. Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinephrine release in the hypothalamic paraventricular nucleus. J Neuroendocrinol. 2000; 12: 5-12.
Greenwood RS, Parent JM. The influence of environment on recovery from brain injury. Neurology. 2002; 59: 1302-3.
Van Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nat Rev Neurosci. 2000; 1: 191-8.
Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 2002. p.129, 297.
Nudo RJ, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve. 2001; 24: 1000-19.
Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965; 124: 319-35.
Chechlacz M, Gleeson JG. Is mental retardation a defect of synapse structure and function? Pediatr Neurol. 2003; 29: 11-7.