2007, Number 2
<< Back Next >>
Arch Cardiol Mex 2007; 77 (2)
Non invasive quantification of the parietal systolic stress of the left ventricle in patients with heart failure. Its clinical application
Guadalajara BJF, González ZJ, Bucio RE, Pérez P, Cué CRJ
Language: Spanish
References: 34
Page: 120-129
PDF size: 127.08 Kb.
ABSTRACT
The purpose of this study is to calculate non invasivelly left ventricular systolic wall stress by echocardiography in patients with primary heart failure, and compare the results with those obtained in parients with overloaded heart failure, diastolic dysfunction by Inapropiatte hypertrophy, with normal ejection fraction and people with normal heart, there stablish the value of the results in clinical settings. We studied 33 patients with heart failure by dilated cardiomyopathy. There was no significant association between the systolic wall stress and the ejection fraction, fractional shortening, dp/dt or left ventricular mass in this group of study. There was a significant association between systolic h/r ratio and the systolic wall stress. This study shows that in primary heart failure the afterload increases and has inverse relationship with ejection fraction (r = 0.86); but, when heart failure obey to an excessive overload exists an exquisite inverse relationship between systolic wall stress and ejection fraction (r = 0.93). The excessive hypertrophy (Inappropriate) reduces the systolic wall stress but causes diastolic dysfunction. The increase of systolic wall stress in Aortic regurgitation with normal ventricular performance is responsible of adequate left ventricular hypertrophy, by other means, in mitral insufficiency the presence of low or normal systolic wall stress does not induce left ventricular hypertrophy, then diameter increases and the hypertrophy is inadequate, despite this, left ventricular function is normal.
REFERENCES
Wood RN: A few applications of a physical theorem to membranes in the human body in a state of tension. J Anat Physiol 1892; 26: 302-310.
Sandler H, Dodge H: Left Ventricular Tension and Stress in man. Circulation Res 1963; 13: 91-104.
Weber KR, Janiecky JS: Myocardiac oxygen consumption: The role of wall force and shortening. Am J Physiol 1977; 233(4): H421-H430.
Hood WP, Rackley Ch E, Rolett EL: Wall Stress in the normal and Hypertrophied Human left ventricle. Am J Cardiol 1986; 22: 550-558.
Laskey WK, Reiche KN, Sulton JM, Tereker WJ, Hirsh Feld JW: Matching myocardial oxygen consumption to mechanical load in human left ventricular hypertrophy and dysfunction. J Am Coll Cardiol 1984; 3: 291-300.
Mirsky I: Left ventricular stress in the intact human heart. Biophys J 1969; 9: 189-196.
Falsetti HL, Mates RE, Grant C, Greene DG, Bunnell IV: Left ventricular wall stress calculated from due-plane cineangiography. Circ Res 1970; 26: 71-83.
Douglas PS, Reichek N, Plappert T, Muhammad A, Sutton MG: Comparison of echocardiographic methods for assessment of left ventricular shortening and wall stress. J Am Coll Cardiol 1987; 9(4): 945-51.
Colan SD, Borow KM, Neumann A: Left Ventricular end Systolic Wall Stress Velocity Fiber Shortening Relation: A load-independent index of myocardial contractily. J Am Coll Cardiol 1984; 4: 715-724.
Guadalajara JF, Martínez C, Gutiérrez PE, Zamora C, Huerta D: Estudio de la función ventricular mediante la cuantificación de la relación grosor/radio (h/r) del ventrículo izquierdo en sujetos sanos. Arch Inst Cardiol Mex 1989; 59: 293-300.
Balzer P, Furber A, Delépine S, Rouleau F, Lethimonnier F, Morell O, et al: Regional assessment of wall curvature stress in left ventricle with magnetic resonance imaging. Am J Physiol 1999; 277 (Heart Circ Physiol 46) H901-H910.
Delepine S, Furber AP, Beyqui F, Prunier F, Blazer P, Le Jeune JJ, Gelin P: 3-D MRI Assessment of regional left ventricular systolic wall stress in patients with reperfused M.I. Am J Physiol (Heart Circ Physiol) 2003; 284: H1190-1197.
Cué Carpio RJ, Meave A, Guadalajara-Boo JF: Estimación del Estrés parietal sistólico del ventrículo izquierdo por imagen de Resonancia Magnética Nuclear: una nueva aproximación al estudio de la poscarga. Arch Cardiol Mex 2005;5:1-70.
Guadalajara JF, Martínez C, Huerta D: La relación grosor/radio (h/r) del ventrículo izquierdo en la estenosis aórtica. implicaciones diagnósticas y terapéuticas. Arch Inst Cardiol Mex 1990; 60: 383-391.
Guadalajara JF, Gual J, Martínez SC, Monobe F, Alexanderson E, Cervantes JL: La hipertrofia miocárdica en la insuficiencia aórtica como mecanismo de compensación. Implicaciones para la indicación quirúrgica. Arch Inst Cardiol Mex 1992; 62: 351-360.
Guadalajara JF, Galván MO, Camacho P, Espinola N, Cervantes J, Huerta D: Cambios Estructurales y Funcionales en el corazón del hipertenso. Estudio Ecocardiográfico. Arch Inst Cardiol Mex 1995; 65: 31-38.
Guadalajara JF, Alexanderson E, Monobe F, Nieto S, Huerta D: La relación grosor/radio (h/r) del ventrículo izquierdo en la insuficiencia mitral pura. Arch Inst Cardiol Mex 1992; 62: 521-528.
Henry WL, de Maria A, Gramiack R, King DL, Kisslo JA, Popp RL: Report of the American Society of Echocardiography Committe on nomenclature and standards in two dimensional echocardiography. Circulation 1980; 62: 212-217.
Shiller NB, Shah PM, Crawford M: Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr 1989; 2: 357-367.
Wahr DW, Wang YS, Shiller NB: Left Ventricular volume determined by two-dimensional echocardiography in normal adult population. J Am Coll Cardiol 1983; 81: 863-868.
Gaasch WH: Left ventricular radious to wall thickness ratio. Am J Cardiol 1979; 43: 1189-1194.
Grossman W: Cardiac hypertrophy; useful adaptation or pathologic process. Am J Med 1980; 69: 576-582.
Braunwald E, Ross J Jr., Sonnenblick EH: Mechanisms of contraction of the normal and failing heart. Boston, Little Brown, 1968. pag. 77.
Grossman W, Jones D, Mc Laurin CP: Wall stress and Patterns of hypertrophy in human left ventricle. J Clin Invest 1975; 56: 56-64.
Grossman W, Braunwald E: The left ventricular end systolic stress-shortening and stress-length relations in humans. Am J Cardiol 1982; 50: 1301-1308.
Osbakken M, Bove A, Span JF: Left Ventricular Function in Chronic Aortic Regurgitation With reference to Systolic Presure/volume and Stress relations. Am J Cardiol 1981; 47: 193-198.
Schunkert H, Jahn L, Isumo S: Localization and regulation of C-fos and C. jun protooncogene induction by systolic wall stress in normal and hypertrophied rat heart. Proc Natl Acad Sci 1991; 88: 11480-11484.
Morgan HE, Baker KM: Cardiac hypertrophy Mechanical, neural and endocrine dependence. Circulation 1991; 83: 13-25.
Weber LT, Brilla CG: Pathological hypertrophy and cardiac Interstitium Fibrosis and Renin-angiotensin-aldosterone system. Circulation 1991; 83: 1839-1865.
Verheul HA: Analysis of Risk Factors for excess mortality after aortic value replacement. J Am Coll Cardiol 1995; 26: 1280-1286.
Starling MR, Kirsh MM, Montgomery DG, Gross MD: Impaired Left Ventricular Contractile Function in Patients With Long Term Mitral Regurgitation and normal ejection fraction. J Am Coll Cardiol 1993; 22: 239-250.
Gunther S, Grossman W: Determinants of Ventricular Function in pressure-overload hypertrophy in man. Circulation 1979; 59: 679-688.
Carabello BA, Green LH, Grossman W, Conh L, Koster K, Collins Jr. J: Hemodynamic determinants of prognosis of aortic valve replacement in critical aortic stenosis and advanced congestive heart failure. Circulation 1980; 62: 42-48.
Ross J. Jr: Afterload mismatch in Aortic and mitral valve disease implications of surgical therapy. J Am Coll Cardiol 1985; 5: 811-826.