2006, Number 4
<< Back Next >>
Bioquimia 2006; 31 (4)
Evaluation of antisickling activity of 4 aromatic aldehydes in hemoglobin using proton magnetic relaxation
Falcón DJE, Del Toro GG, Alonso GY
Language: Spanish
References: 33
Page: 132-139
PDF size: 146.08 Kb.
ABSTRACT
The formation of a Shiff base aduct hemoglobin-aromatic aldehyde, it has been reported as inhibitor of the hemoglobin S polymerization. Using the Proton Magnetic Resonance methodology, it can be studied the polymerization kinetics and determine the delay time. Our studies
in vitro demonstrate the inhibitor effect of the isovanillin, o-vanillin, m-hydroxybenzaldehyde and the p-hydroxybenzaldehyde, using molar relationships (hemoglobin S/compound) 1:1, 1:4 and 1:8. The delay time increment (expressed as percent) obtained for each one of the molar relationships was, isovanillin: 34 ± 6% (1:1), 68 ± 16% (1:4), o-vanillin: 26 ± 10% (1:1), 63 ± 20% (1:4), m-hydroxybelzaldehyde: 16 ± 4% (1:1), 44 ± 12% (1:4) and the p-hydroxybenzaldehyde: 10 ± 3% (1:1), 32 ± 8% (1:4). In the case of 1:8, the characteristic kinetics curve was not obtained. To the employed concentrations, we not found hemolytic activity on the erythrocytes. These results confirm the antisickling activity of these aromatic aldehydes, for a technique different to the reported in literature that also allows quantify the concentration effect. The same ones will facilitate the study of the therapeutic utility of these compounds in the sickle cell anemia treatment.
REFERENCES
Serjeant GR. Sickle Cell Disesase. 2nd. ed. Oxford: University Pres; 1992.
Stuart MJ, Nagel RL. Sickle-cell disease. Lancet 2004; 364: 1343-1360.
Eaton WA, Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem 1990; 40: 63-279.
Zaugg RH, Walder JA, Klotz I M. Schiff base adducts of hemoglobin. J Biol Chem 1977; 252: 8542-8.
BeddelL CR, Kneen G, White RD. The antisickling activity of a series of aromatic aldehydes. Br J Pharmacol 1979; 66: 70.
Abraham DJ, Mehanna AS, Wireko FC, Whitney J, Thomas RP, Orringer EP. Vanillin, a potential agent for the treatment of sickle cell anemia. Blood 1991; 77: 1334-41.
Del Toro G, Falcón JE, Alonso Y, Valdés YC, Cabal CA. Vainillina: agente inhibidor de la polimerización de la hemoglobina S. Bioquimia 2003; 28: 4-10.
Harris JW, Bensusan HB. The kinetics of the sol-gel transformation of deoxyhemoglobin S by continuous monitoring of viscosity. J Lab Clin Med 1975; 86: 564-75
Kowalczykowski S, Steinhardt J. Kinetics of hemoglobin S gelation followed by continuously sensitive low-shear viscosity: changes in viscosity and volume on aggregation. J Mol Biol 1977; 115: 201-13.
Moffat K, Gibson QH. The rates of polymerization and depolymerization of sickle cell hemoglobin. Biochem Biophys Res Commun 1974; 61: 237-43.
Bridges KR, Barabino GD, Brugnara C, Cho MR, Christoph GW, Dover G, et al. A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood 1996; 88: 4701-10.
Adachi K, Asakura T. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers. Blood Cells 1982; 8: 213-224.
Ivanova M, Jasuja R, Kwong S, Briehl RW, Ferrone FA. Nonideality and the nucleation of sickle hemoglobin. Biophys J 2000; 79: 1016-1022.
Losada J, Guilart F, Cabal CA. NMR relaxation study of sickle cell disease. Proceedings of the XXIV AMPERE Congress Magnetic Resonance and Related Phenomena 1988; Poznan, Polonia: 1027-30.
Cabal CA, Fernández AA, Lores MA, Álvarez ED, Losada J, Soler C, et al. Magnetic relaxation in the kinetics of the polymerization of hemoglobin S. Clinical diagnosis and treatment with vanillin. Proc Inter Soc Mag Res Med (Boesch Ch., Heshiki A., Grist T. M., eds.), pp. 1705, Sixth Scientific Meeting and Exhibition, Sidney, Australia 1998. Berkeley: ISMRM 1998.
Lores MA. Estudios de los procesos de interacción magnética y movilidad molecular durante la polimerización de la HbS por métodos de resonancia magnética. Tesis Doctoral; 2005. Univeridad de Oriente. Santiago de Cuba, Cuba.
Lores M, Cabal C. Proton magnetic relaxation process during the polymerization of hemoglobin S. Appl Magn Reson 2005; 28: 79-80.
Alonso Y, Del Toro G, Falcón JE, Valdés YC. Actividad hemolítica de la ortovainillina y la isovainillina sobre eritrocitos humanos. Rev Cubana Farm 2005; 39: 20-25.
Falcón JE, Del Toro G, Alonso Y. Estudio espectrofotométrico de la actividad hemolítica del 3-hidroxibenzaldehído y el 4-hidroxibenzaldehído en eritrocitos. Rev Cubana Quím 2003; 15: 63-66.
Fernández AA, Falcón JE, Del Toro G, Pozo AR. Caracterización de los buffer fosfatos utilizados en la preparación de solución de hemoglobina (Hb) a pH controlado. Rev Cubana Quím 2001; 13: 87-96.
Ciscar F, Farreras P. Diagnóstico hematológico. 3a. ed. Barcelona: Jims; 1972: 1345-1347.
Stanley HR. Toxicity testing of dental materials. Florida: CRC Press Inc; 1985: 7-22.
Malfa K, Steinhardt JA. Temperature-dependent latent-period in the aggregation of sickle-cell deoxyhemoglobin. Biochem Biophys Res Commun 1974; 59: 887-893.
Lubin BH. Sickle cell disease and the endothelium. N Engl J Med 2004; 124: 391-402.
Wagner M, Eckman J, Wick T. Sickle cell disease: what makes the red cells stay in the microvasculature long enough to sickle? J Lab Clin Med 2004; 144: 227-28.
Hebbel RP. Adhesive interactions of sickle erythrocytes with endothelium. J Clin Invest 1997; 99: 2561-64.
Hofrichter J, Ross PD, Eaton WA. Kinetics and mechanism of deoxyhemoglobin S gelation. A new approach to understanding sickle cell disease. Proc Natl Acad Sci 1974; 71: 4864-4868.
Eaton WA, Hofrichter J, Ross PD. Delay time of gelation. A possible determinant of clinical severity in sickle cell disease. Blood 1976; 47: 115-120.
Poillon WN, Kim BC, Castro O. Intracellular hemoglobin S polymerization and the clinical severity of sickle cell anemia. Blood 1998; 91: 1777-83.
Altman PL, Dittmer DS. Respiration and circulation. FASED: Bethesda, Md; 1971: 417-422
Hebbel RP. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood 1991; 77: 214-37.
Mohandas N, Evans E. Adherence of sickle erythrocytes to vascular endothelial cell: requirement for both cell membranes change and plasma factors. Blood 1984; 64: 282-7.
Iyamu EW, Turner EA, Asakura T. In vitro effects of NIPRISAN (Nix-0699): a naturally occurring, potent antisickling agent. Br J Haematol 2002; 118: 337-43.