2022, Number 3
<< Back Next >>
Rev Cubana Med Trop 2022; 74 (3)
Artemisine efficacy in murine models of experimental cutaneous leishmaniasis caused by Leishmania amazonensis
Machín GL, Alcantar SJL, Gille L, Monzote FL
Language: Spanish
References: 25
Page:
PDF size: 351.17 Kb.
ABSTRACT
The limited treatments available for leishmaniasis require the development of research for new therapeutic agents. One recommended strategy is the pharmacological repositioning, where artemisinin stands out as a possible candidate. The aim of this study is to evaluate the potential of artemisinin in two murine models of experimental cutaneous leishmaniasis. For this purpose, BALB/c (susceptible) and C57BL/6 (resistant) mice infected with Leishmania amazonensis were used. Oral or intralesional treatment was performed with five doses of artemisinin at 30 mg/kg every four days. Weight behavior, evolution of lesion size, and parasitic load were determined. In both animal models it was observed that treatment with artemisinin (oral and intralesional) decreased lesion size and parasitic load with respect to the untreated infected groups (p < 0.05), with no significant differences with respect to Glucantime® (p > 0.05). Orally treated C57BL/6 mice were the only ones able to control lesions until the end of the experiment. The in vivo efficacy of artemisinin in two models of cutaneous leishmaniasis induced by L. amazonensis is demonstrated and oral administration is highlighted in the control of the disease. Further development of this drug for the treatment of cutaneous leishmaniasis is suggested.
REFERENCES
Burza S, Croft S, Boelaert M. Leishmaniasis. Lancet. 2018;392(10151):951-70. DOI:http://doi.org/10.1016/S0140-6736(18)31204-2
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671. DOI:http://doi.org/10.1371/journal.pone.00356712.
Karimkhani C, Wanga V, Coffeng LE, Naghavi P, Dellavalle RP, Naghavi M. Global burden of cutaneous leishmaniasis: A cross-sectional analysis from the global burden of disease study 2013. Lancet Infect Dis. 2016;16(5):584-91. DOI:http://doi.org/10.1016/S1473-3099(16)00003-73.
Roatt B, Mirelle J, Cristiane R, Coura W, Dian R, Barbosa A. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol. 2020;104(21):8965-77. DOI: http://doi.org/10.1007/s00253-020-10856-W4.
Tiwari N, Gedda MR, Tiwari VK, Singh SP, Singh RK. Limitations of current therapeutic options, possible drug targets and scope of natural products in control of leishmaniasis. Mini Rev Med Chem. 2018;18(1):26-41. DOI:http://doi.org/10.2174/1389557517666170425105129 5.
Hotez PJ. Global urbanization and the neglected tropical diseases. PLoS Negl Trop Dis. 2017;11(2):e0005308. DOI:http://doi.org/10.1371/journal.pntd.0005308 6.
Booth M. Climate change and the neglected tropical diseases. Adv Parasitol. 2018;100:39-126. DOI:http://doi.org/10.1016/bs.apar.2018.02.0017.
World Health Organization. Leishmaniasis. OMS; 2021[acceso 05/10/2021]. Disponible en: Disponible en: https://www.who.int/newsroom/fact-sheets/detail/leishmaniasis 8.
Lobo de Souza M, dos Santos WM, Domingues ALM, de Moura LR, Gonzaga LA, Silva EO, et al. Cutaneous leishmaniasis: new oral therapeutic approaches under development. Int J Dermatol. 2022;61(1):89-98. DOI:http://doi.org/10.1111/ijd.159029.
Costa V, Nonato F, Guimarăes E, Rodríguez L, Botelho M. Activity of antimalarial drugs in vitro and in a murine model of cutaneous leishmaniasis. J Med Microbiol. 2013;62(7):1001-10. DOI:http://doi.org/10.1099/jmm.0.058115-010.
Yang D, Liew F. Effects of qinghaosu (artemisinin) and its derivatives on experimental cutaneous leishmaniasis. Parasitol. 1993;106(1):7-11. DOI:http://doi.org/10.1017/s003118200007475811.
Sen R, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P, et al. Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol. 2007;56(9):1213-8. DOI:http://doi.org/10.1099/jmm.0.47364-012.
Sen R, Ganguly S, Saha P, Chatterjee M. Efficacy of artemisinin in experimental visceral leishmaniasis. Int J Antimicrob Agents. 2010;36(1):43-9. DOI:http://doi.org/10.1016/j.ijantimicag.2010.03.008 13.
Cortes S, Albuquerque A, Cabral LIL, Lopes L, Campino L, Cristiano MLS. In vitro susceptibility of Leishmania infantum to artemisinin derivatives and selected trioxolanes. Antimicrob Agents Chemother. 2015;59(8):5032-5. DOI: http://doi.org/10.1128/AAC.00298-1514.
Ghaffarifar F, Heydari F, Dalimi A, Hassan Z, Delavari M, Mikaeiloo H. Evaluation of apoptotic and antileishmanial activities of artemisinin on promastigotes and BALB/C mice infected with Leishmania major. Iran J Parasitol. 2015;10(2):258-67.
Machín L, Nápoles R, Gille L, Monzote L. Leishmania amazonensis response to artemisinin and derivatives. Parasitol Int. 2021;80:102218. DOI:http://doi.org/10.1016/j.parint.2020.10221816.
Buffet PA, Sulahian A, Garin YJ, Nassar N, Derouin F. Culture microtitration: a sensitive method for quantifying Leishmania infantum in tissues of infected mice. Antimicrob Agents Chemother. 1995;39(9):2167-8. DOI:http://doi.org/10.1128/AAC.39.9.216717.
Dehkordi N, Ghaffarifar F, Hassan Z, Heydari F. In vitro and in vivo studies of antileishmanial effect of artemether on Leishmania infantum. Jundish J Microbiol. 2013;6(5):e6379. DOI:http://doi.org/10.5812/jjm.637918.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev. 2001;46(1-3):3-26. DOI:http://doi.org/10.1016/s0169-409x(00)00129-019.
Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Dis Today Technol. 2004;4(1):337-41. DOI:http://doi.org/10.1016/j.ddtec.2004.11.00720.
Banek K, Lalani M, Staedke SG, Chandramohan D. Adherence to artemisinin-based combination therapy for the treatment of malaria: a systematic review of the evidence. Malar J. 2014;13(7). DOI:http://doi.org/10.1186/1475-2875-13-721.
Mears ER, Modabber F, Don R, Johnson GE. A review: The current in vivo models for the discovery and utility of new anti-leishmanial drugs targeting cutaneous leishmaniasis. PLoS Negl Trop Dis. 2015;9(9):e0003889. DOI: [url]http://doi.org/10.1371/journal.pntd.000388922. [/url]
Probst CM, Silva RA, Menezes JP, Almeida TF, Gomes IN, Dallabona AC, et al. A comparison of two distinct murine macrophage gene expression profiles in response to Leishmania amazonensis infection. BMC Microbiol. 2012;12(22). DOI:http://doi.org/10.1186/1471-2180-12-2223.
Meira CS, Gedamu L. Protective or detrimental? Understanding the role of host immunity in leishmaniasis. Microorganisms. 2019;7(12):695. DOI:http://doi.org/10.3390/microorganisms712069524.
Hendrickx S, Caljon G, Maes L. Need for sustainable approaches in antileishmanial drug discovery. Parasitol Res. 2019;118(10):2743-52. DOI:http://doi.org/10.1007/s00436-019-06443-225.