2022, Number 3
<< Back Next >>
Rev Cubana Med Trop 2022; 74 (3)
Methodology for primary screening of antidengue activity based on natural products
del Barrio AGC, Álvarez VM
Language: Spanish
References: 39
Page:
PDF size: 326.16 Kb.
ABSTRACT
Introduction:
Dengue virus, transmitted by Aedes specie mosquitos, has re-emerged in the last years causing the arthropod-borne disease with higher prevalence in humans, to which there is no specific antiviral therapy or vaccine for its treatment and prevention. This has motivated the search for natural-based products with antiviral activity, which implies the need to establish an evaluation system of natural and synthetic products through a rapid in vitro screening methodology.
Objective:
To propose a primary screening cell-based antiviral activity system against dengue virus.
Methods:
Papers published in national and international journals indexed in SciELO or PubMed were used as primary sources of information. The examples selected in the figures and table were retrieved from the joint publications of the Virology Group of the School of Biology of the University of Havana and the Arbovirus Laboratory of the Institute of Tropical Medicine Pedro Kourí.
Information, Analysis and Synthesis:
The main cell-based methodologies are presented, with emphasis on those assumed by our research group (evaluation of cytotoxicity and the primary antiviral activity assay). The algorithm for product evaluation is presented. The methodology described has allowed initiating a search program for antidengue drugs, taking into account the criteria for evaluating antiviral efficacy and toxicity, in order to carry out a subsequent study on the mechanisms of action of the different compounds or products evaluated.
REFERENCES
Murugesan A, Manoharan M. Dengue Virus. In Emerging and Reemerging Viral Pathogens. Academic Press: London; 2020. pp. 281-359.
Pereira R. Structural proteomics of dengue virus. Curr Opin Microbiol. 2008;11:369-77.
Feng G, Pei-Yong S. The challenges of dengue drug discovery and development. Clin Invest (Lond.). 2014;4(8):683-5.
WHO. Dengue and Severe Dengue. World Health Organization: Geneva; 2020.
Kurane I, Takasaki T. Dengue fever and dengue haemorrhagic fever: challenges of controlling an enemy still at large. Rev Med Virol. 2001;11:301-11.
Lee JK, Chui JL, Lee RCH, Kong HY, Chin W X, Chu JJ. Antiviral activity of ST081006 against the dengue virus. Antiviral Research. 2019 Nov;171:104589. DOI:https://doi.org/10.1016/j.antiviral.2019.1045896.
Wilder-Smith A, Ooi E-E, Vasudevan SG, Gubler DJ. Update on Dengue: Epidemiology, Virus Evolution, Antiviral Drugs, and Vaccine Development. Curr Infect Dis Rep. 2010;12:157-64.
Mladinich KPS, Piaskowski SM, Rudersdorf R, Eernisse CM, Weiegrau K, Martins M, et al8. . Dengue virus-specific CD4+ and CD8+ T lymphocytes target NS1, NS3 and NS5 in infected Indian rhesus macaques. Immunogenetics. 2012;64:111-21.
Guzman G, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al9. . Dengue: a continuing global threat. Nature Reviews Microbiology. 2010;8:S7-S16.
Teixeira RR, Pereira WL, Costa da Silveira AF, da Silva AM, Silva de Oliveira A, Lopes da Silva M, et al. Natural Products as Source of Potential Dengue Antivirals. Molecules. 2014;19(6):8151-76. DOI:https://doi.org/10.3390/molecules19068151
Nguyen NM, Tran CNB, Phung LK, Duong KTH, Huynh HLA, Farrar J, et al11. . A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in Adult dengue patients. J Infect Dis. 2013;207(9):1442-50.
Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, Wills B, et al12. . A randomized controlled trial of chloroquine for the treatment of dengue in vietnamese adults. PLoS Neglected Tropical Diseases. 2012;6(6):10.1371.
Low JSY, Chen KC, Wu KX, Ng MML, Chu JJH. Antiviral activity of emetine dihydrochloride against dengue virus infection. J Antivir Antiretrovir. 2009;1:062-071.
Whitehorn J, Nguyen CVV, Khanh LP, Kien DTH, Quyen NTH, Tran NTT, et al. Lovastatin for the Treatment of Adult Patients with Dengue: A Randomized, Double-Blind, Placebo-Controlled Trial. Clinical Infectious Diseases. 2015. DOI:https://doi.org/10.1093/cid/civ94914.
Tam DTH, Ngoc TV, Tien NTH, Kieu NTT, Thuy TT, Thanh LTC, et al. [arttitle]Effects of short-course oral corticosteroid therapy in early dengue infection in vietnamese patients: A randomized, placebo-controlled trial[/arttitle]. [source]Clinical Infectious Diseases[/source]. 2012. DOI:https://doi.org/10.1093/cid/cis65515.
Ahmadi A, Zorofchian S, Abubakar S, Zandi K. Antiviral potential of algae polysaccharides isolated from marine sources: a review. Biomed Res Int. 2015;2015:825203. DOI:https://doi.org/10.1155/2015/825203
Rojas Pérez L, Álvarez Vera M, Morier Díaz LF, Valdés Iglesias O, del Barrio Alonso G. Evaluación preliminar de la actividad antiviral del extracto de Laurencia obtusa frente a herpesvirus y virus dengue. Rev Cubana de Farmacia. 2016;50(1):106-16.
Rumlova M, Ruml T. In vitro18. methods for testing antiviral drugs. Biotechnology Advances. 2018;36:557-76.
da Silveira Oliveira AF, Teixeira R, de Oliveira AS, Martins de Souza AP, Lopes da Silva M, Oliveira de Paula S. Potential Antivirals: Natural Products Targeting Replication Enzymes of Dengue and Chikungunya Viruses. Molecules. 2017 Mar;22(3):505. DOI:https://doi.org/10.3390/molecules2203050519.
. Koishi AC, Rodrigues Zanello P, Bianco EM, Bordignon P, Nunes Duarte dos Santos C. Screening of Dengue Virus Antiviral Activity of Marine Seaweeds by an in-situ Enzyme-Linked Immunosorbent Assay. PLoS ONE 2012;7(12):e51089.
Diosa-Toroa M, Troosta B, van de Pola D, Heberle AM, Urcuqui-Inchima S, Thedieck K, et al21. . Tomatidine, a novel antiviral compound towards dengue virus. Antiviral Research 2019;161:90-9.
Talarico LB, Noseda MD, Ducatti DRB, Duarte MER, Damonte EB. Differential inhibition of dengue virus infection in mammalian and mosquito cells by iotacarrageenan. Journal of General Virology. 2011;92:1332-42.
del Barrio G, Parra F. Evaluation of the antiviral activity of an aqueous extract for Phyllantus orbicularis. J Etnopharmacology. 2000;72:317-22.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55-63.
Fernández Romero JA, del Barrio AG, Romeu AB, Gutierrez Y, Valdés VS, Parra F. In vitro antiviral activity of Phyllanthus orbicularis extracts against herpes simplex virus type 1. Phytother Res. 2003;17:980-2.
del Barrio G, Álvarez AL, Valdés S, Parra F. Metodología de pesquisa preclínica de actividad anti-herpesvirus a partir de productos naturales. Rev Cub Farm. 2008[Acceso 10/03/2021];42(2). Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?=S004-75152008000200008 26.
Sood R, Raut R, Tyagi P, Pareek PK, Barman TK, Singhal S, et al. Cissampelos pareira Linn: Natural Source of Potent Antiviral Activity against All Four Dengue Virus Serotypes. PLoS Negl Trop Dis. [volid]2015[/volid];[volid]9[/volid]([issueno]12[/issueno]):e0004255. DOI:https://doi.org/10.1371/journal.pntd.000425527.
Al Jabri AA, Wigg MD, Odford JS. Initial in vitro screening of drugs candidates for their potential antiviral activities. En MAhy BWJ y Kangro HO (eds.). Virology Methodss Manual. Academic Press; 1996. pp. 303-5.
Bocci G, Bradfute SB, Ye C, Garcia MJ, Parvathareddy J, Reichard W, et al29. . Virtual and In Vitro Antiviral Screening Revive Therapeutic Drugs for COVID-19. ACS Pharmacol Transl Sci. 2020;3:1278-92.
Panda K, Alagarasu K, Patil P, Agrawal M, More A, Kumar NV, et al. In Vitro Antiviral Activity of aMangostin against Dengue Virus Serotype-2 (DENV-2). Molecules. 2021 May;26(10):3016. DOI:https://doi.org/10.3390/molecules2610301630.
del Barrio Alonso G, Jardines Figueredo Y, Spengler Salabarría I, García Pérez TH, Roque Quintero A, Alvarez Vera M. Evaluación preliminar de la actividad de Ageratina havanensis31. contra virus dengue 2. Rev Cub Med Trop. 2021[Acceso 10/03/2021];73(1). Disponible en: Disponible en: http://www.revmedtropical.sld.cu/index.php/medtropical/article/view/573/403 31.
Suzuki Y, Kotoura M, Yashima S, Wu H, Nakano T, Sano K. Measuring Dengue Virus RNA in the Culture Supernatant of Infected. Cells by Real-time Quantitative Polymerase Chain Reaction. J Vis Exp. 2018;(141):e58407. DOI:https://doi.org/10.3791/58407 32.
Perdomo F, Perilla P, Salgado DM, Narváez CF. Detection and quantification of dengue virus 2 in culture supernatant and plasma of children by qPCR using a commercial kit and the EcoTM System-Illumina device. RFS Rev Facultad Salud. 2014;6(1):40-7.
Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abu Bakar S. In vitro antiviral activity of fisetin, rutin and naringenin against Dengue virus type-2. J Med Plants Res. 2011;5:5534-9.
De Clercq E. Antivirals for the treatment of herpesvirus infections. J Antimicrob Chemother. 1993;32 Suppl A:121-32.
Chattopadhyay D, Chawla-Sarkar M, Chatterjee T, Sharma Dey R, Bag P, Chakraborti S, et al. Recent advancements for the evaluation of anti-viral activities of natural products. New Biotechnology. 2009;25(5):347-68. DOI:https://doi.org/10.1016/j.nbt.2009.03.007/36.
Christy MP, Uekusa Y, Gerwick L, Gerwick WH. Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV‑2. J Nat Prod. 2021;84(1):161-82.
Vicenti I, Dragoni F, Giannini A, Giammarino F, Spinicci M, Saladini F, et al. Development of a Cell-Based Immunodetection Assay for Simultaneous Screening of Antiviral Compounds Inhibiting Zika and Dengue Virus Replication. SLAS Discovery 2020;1-9. DOI:https://doi.org/10.1177/2472555220911456/journals.sagepub.com/home/jbx
Sigal M-P, Kobi E, Hadeel I, Adva H, Bertold F, Gili J. A new antiviral screening method that simultaneously detects viral replication, cell viability, and cell toxicity. J Virological Methods. 2014;208:138-43.