2025, Number 1
<< Back Next >>
Acta Med 2025; 23 (1)
Current physiopathological pathways and therapeutic targets for diabetic nephropathy in type 1 and 2 diabetes
Díaz GEJ, Sánchez AR, Bautista MB
Language: Spanish
References: 18
Page: 41-46
PDF size: 216.79 Kb.
ABSTRACT
The kidney is an organ with great functional importance; it
regulates body fluid levels and blood pressure, helps in bone
maintenance, and is essential in hematopoiesis. In patients
with type 1 and 2 diabetes, one of the main complications is
nephropathy since this pathology induces pathophysiological
changes that affect the proper functioning of the kidney. The
mechanism of diabetic nephropathy consists of alterations
in homeostasis in renal hemodynamics, causing glomerular
hypertension, ischemia, and hypoxia, an increase in oxidative
stress, and upregulation of the renin-aldosterone system, which
causes clinical manifestations such as albuminuria, decreased
glomerular filtration rate and kidney disease. Currently,
some therapies are based on the control of changes in renal
hemodynamics, in the renin-aldosterone system, glomerular
hypertension, ischemia, and hypoxia, such as control of glucose
and blood pressure, inhibitors of the renin-angiotensin system,
mineralocorticoid receptor antagonists and sodium-glucose
cotransporter inhibitors. Currently, new therapeutic targets
have been investigated to intervene in the progression of the
pathophysiological changes of diabetic nephropathy and the
mechanisms that give origin to it.
REFERENCES
De Boer IH, Khunti K, Sadusky T, Tuttle KR, Neumiller JJ, Rhee CMet al. Diabetes management in chronic kidney disease: a consensusreport by the American Diabetes Association (ADA) and kidneydisease: improving global outcomes (KDIGO). Diabetes Care. 2022;45 (12): 3075-3090. Available in: https://doi.org/10.2337/dci22-0027
Selby NM, Taal MW. An updated overview of diabetic nephropathy:diagnosis, prognosis, treatment goals and latest guidelines. DiabetesObes Metab. 2020; 22 Suppl 1: 3-15. doi: 10.1111/dom.14007.
Di Vincenzo A, Bettini S, Russo L, Mazzocut S, Mauer M, FiorettoP. Renal structure in type 2 diabetes: facts and misconceptions. JNephrol. 2020; 33 (5): 901-907. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557481/pdf/40620_2020_Article_797.pdf
Pillai A, Fulmali D. A narrative review of new treatment options fordiabetic nephropathy. Cureus. 2023; 15 (1): e33235. doi: 10.7759/cureus.33235.
Haider MZ, Aslam A. Proteinuria. [Updated 2023 Sep 4]. In: StatPearls[Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Availablein: https://www.ncbi.nlm.nih.gov/books/NBK564390/
Karimifar M, Afsar J, Amini M, Moeinzadeh F, Feizi A, AminorroayaA. The effect of linagliptin on microalbuminuria in patients withdiabetic nephropathy: a randomized, double blinded clinical trial.Sci Rep. 2023; 13 (1): 3479. Available in: https://doi.org/10.1038/s41598-023-30643-7
Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of diabetickidney disease: current and future. Diabetes Metab J. 2021; 45 (1):11-26. doi: 10.4093/dmj.2020.0217.
Samsu N. Diabetic nephropathy: challenges in pathogenesis,diagnosis, and treatment. Biomed Res Int. 2021; 2021: 1497449.doi: 10.1155/2021/1497449.
Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P et al.Effect of finerenone on chronic kidney disease outcomes in type 2diabetes. N Engl J Med. 2020; 383 (23): 2219-2229. doi: 10.1056/NEJMoa2025845.
MacIsaac RJ, Jerums G, Ekinci EI. Effects of glycaemic managementon diabetic kidney disease. World J Diabetes. 2017; 8 (5): 172-186.doi: 10.4239/wjd.v8.i5.172.
Nordheim E, Geir Jenssen T. Chronic kidney disease in patients withdiabetes mellitus. Endocr Connect. 2021; 10 (5): R151-R159. doi:10.1530/EC-21-0097.
Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, AndersenS, Arner P et al. Irbesartan in patients with type 2 diabetes andmicroalbuminuria study group. The effect of irbesartan on thedevelopment of diabetic nephropathy in patients with type 2 diabetes.N Engl J Med. 2001; 345 (12): 870-878.
Kanda H, Yamawaki K. Bardoxolone methyl: drug development fordiabetic kidney disease. Clin Exp Nephrol. 2020; 24 (10): 857-864.doi: 10.1007/s10157-020-01917-5.
Stanigut AM, Pana C, Enciu M, Deacu M, Cimpineanu B, Tuta LA.Hypoxia-inducible factors and diabetic kidney disease-how deepcan we go? Int J Mol Sci. 2022; 23 (18): 10413. doi: 10.3390/ijms231810413.
Mima A. Hypoxia-inducible factor-prolyl hydroxylase inhibitorsfor renal anemia in chronic kidney disease: advantages anddisadvantages. Eur J Pharmacol. 2021; 912: 174583. doi: 10.1016/j.ejphar.2021.174583.
Li X, Lu L, Hou W, Huang T, Chen X, Qi J et al. Epigenetics in thepathogenesis of diabetic nephropathy. Acta Biochim Biophys Sin(Shanghai). 2022; 54 (2): 163-172. doi: 10.3724/abbs.2021016.
Matsui T, Higashimoto Y, Nishino Y, Nakamura N, Fukami K, YamagishiSI. RAGE-aptamer blocks the development and progression ofexperimental diabetic nephropathy. Diabetes. 2017; 66 (6): 1683-1695. doi: 10.2337/db16-1281.
Alkhalaf A, Klooster A, van Oeveren W, Achenbach U, Kleefstra N,Slingerland RJ et al. A double-blind, randomized, placebo-controlledclinical trial on benfotiamine treatment in patients with diabeticnephropathy. Diabetes Care. 2010; 33 (7): 1598-1601.