2024, Number 6
<< Back Next >>
Acta Ortop Mex 2024; 38 (6)
Risk factors for the development of surgical wound infections in patients with closed fractures
Quiroz-Williams J, Antonio-Flores G, Gaytán-Fernández S, Portillo-Gutiérrez S, Rueda-Alvarado C, Barrios-López A, Palma-Jaimes A, Barragán-Hervella R
Language: Spanish
References: 37
Page: 383-389
PDF size: 332.22 Kb.
ABSTRACT
Introduction: orthopedic device-associated infections (ODI) are considered surgical site infections (SSI). SSIs are generally attributed to contamination during surgery, but they require certain factors for their development. Therefore, the objective of this study was to analyze the risk factors for the development of SSIs in patients with closed fractures.
Material and methods: a retrospective observational study was carried out, where records of patients with closed bone fractures undergoing surgery were reviewed during the period from January to December 2020. The variables studied were age, sex, BMI, comorbidities, as well as surgery time, ischemia time, intraoperative bleeding, type of fracture, serum glucose 24-48 hours prior to surgery and blood transfusion. The analysis was performed with Fisher, OR and binary logistic regression. Accepted statistical value: p < 0.05.
Results: sample of 131 patients. Mean age was 47.6 ± 18.7 years. Diabetes mellitus (DM) 24.4%, systemic arterial hypertension (SAH) 23.7%, obesity 70.2%, smoking 47.3% and alcoholism 67.9%. Simple fractures 34.4% and complex 65.6%. 19.1% presented infection after surgery. Risk factors found: glucose > 120 mg/dl OR: 4.9 (95% CI, 1.6-15.7, p = 0.001), surgery time > 120 minutes OR: 6.7 (95% CI, 2.3-20.1, p = 0.001), male sex OR: 4.5 (95% CI, 1.5-13.9, p = 0.009) and age < 50 years OR: 0.3 (95% CI, 0.07-0.8, p = 0.031).
Conclusions: having a glucose > 120 mg/dl before surgery and a surgical time > 120 minutes as risk factors for the development of ODI in closed long bone fractures.
REFERENCES
García AM, Martínez HA, González GM. Infección asociada a implantes ortopédicos. Serie de casos. Lux Médica. 2019; 14(41): 59-66.
Mederos-Piñeiro M, Méndez-Gálvez L, Machado-Romero RE. Infecciones de la herida quirúrgica limpia en afecciones músculo-esqueléticas. Acta Médica del Centro. 2017; 11(1): 46-52.
Berriós-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for disease control and prevention guideline for the prevention of surgical site infection. JAMA Surg. 2017; 152(8): 803.
Ducel G, Fabry J, Nicolle L, Girard R, Perraud M, Prüss A, et al. Guía práctica. Prevención de las infecciones nosocomiales. Organización Mundial de la Salud 2009.
Secretaría de Salud. Manual para la Implementación de los Paquetes de Acciones para Prevenir y Vigilar las Infecciones Asociadas a la Atención de la Salud (IAAS). 2019.
Instituto Mexicano del Seguro Social. Diagnóstico y tratamiento de las infecciones asociadas a dispositivos ortopédicos. Prótesis y/o material de osteosíntesis. Guía de Práctica Clínica. Ciudad de México; 2014.
Young PY, Khadaroo RG. Surgical site infections. Vol. 94, Surgical Clinics of North America. W.B. Saunders; 2014. p. 1245-64.
McQuillan TJ, Cai LZ, Corcoran-Schwartz I, Weiser TG, Forrester JD. Surgical site infections after open reduction internal fixation for trauma in low and middle human development index countries: a systematic review. Vol. 19, Surgical Infections. Mary Ann Liebert Inc.; 2018. 254-63.
Owens CD, Stoessel K. Surgical site infections: epidemiology, microbiology and prevention. J Hosp Infect. 2008; 70 Suppl 2: 3-10.
Mueck KM, Kao LS. Patients at high-risk for surgical site infection. Vol. 18, Surgical Infections. Mary Ann Liebert Inc.; 2017. p. 440-6.
Tucci G, Rommanini E, Zanopli G, Pavan L, Fantoni M, Venditti M. Prevention of surgical site infections in orthopaedic surgery: a synthesis of current recommendations. Eur Rev Med Pharmacol Sci. 2019; 23(2 Suppl): 224-39.
Kocur E, Rozentryt P, G?ogowska-Gruszka A. Risk factors for surgical site infection in patients after implant-related orthopedic procedures. Przegl Epidemiol. 2021; 75(3): 332-46.
Mahmood B, Golub IJ, Ashraf AM, Ng MK, Vakharia RM, Choueka J. Risk factors for infections following open reduction and internal fixation for distal radius fractures an analysis of the medicare claims database. Bull Hosp Jt Dis (2013). 2022; 80(2): 228-33.
Li J, Zhu Y, Zhao K, Zhang J, Meng H, Jin Z, Ma J, et al. Incidence and risks for surgical site infection after closed tibial plateau fractures in adults treated by open reduction and internal fixation: a prospective study. J Orthop Surg Res. 2020; 15(1): 349.
Shao J, Zhang H, Yin B, Li J, Zhu Y, Zhang Y. Risk factors for surgical site infection following operative treatment of ankle fractures: a systematic review and meta-analysis. Int J Surg. 2018; 56: 124-32.
Pérez-Tapia AG, Sánchez-Vázquez M, Bautista-Mata DC, Mendosa-Charcas R, Fragoso-Morales LE, Velarde del Río LT, et al. Prevalencia de infección de herida quirúrgica, causas y resistencia a los fármacos en el Hospital General de Zona núm. 2 del IMSS, San Luis Potosí. Revista de Especialidades Médico-Quirúrgicas [Internet]. 2012; 17(4): 261-5.
Mateos-Escamilla M, Reyes-Fernández J, Valencia-Valencia FO. Índice de infecciones intrahospitalarias y germen causal en cirugías programadas del servicio de ortopedia. Rev Mex Ortop Traum. 2000; 14(4): 317-20.
Pérez-Ruíz S, Matus-Jiménez J. Factores de riesgo asociados a infección de fracturas expuestas por proyectil de arma de fuego. Acta Ortop Mex. 2019; 33(1): 28-35. Disponible en: www.medigraphic.com/actaortopedica
Taufik A, Wiweko A, Yudhanto D, Wardoyo EH, Habib P, Rizki M, et al. Bacterial infection and antibiotic resistance pattern in open fracture cases in Indonesia. Ann Med Surg (Lond). 2022; 76: 103510.
Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 2011; 6(11): 1329-49.
Lasa I, Del Pozo JL, Penadés JR, Leiva J. Biofilms bacterianos e infección. An Sist Sanit Navar. 2005; 28(2): 163-75.
Argüelles-Martínez O, Rivera-Villa A, Miguel-Pérez A, Torres-González R, Pérez-Atanasio J, Mata-Hernández A, et al. Agentes etiológicos más frecuentes en infecciones periprotésicas de artroplastía primaria de rodilla y cadera en adultos mayores. Acta Ortop Mex. 2016; 30(3): 116-8. Disponible en: http://www.medigraphic.com/actaortopedica
Losa-Palacios S, Achaerandio-De Nova A, Gerónimo-Pardo M. Conservative multimodal management of osteosynthesis material in surgical wounds with polymicrobial superinfection, incuding methicillin-resistant Staphylococcus aureus. Clinical case. Rev Esp Cir Ortop Traumatol. 2020; 64(2): 125-9. Available in: www.elsevier.es/rot
Ren YL, Liu L, Sun D, Zhang ZD, Li M, Lan X, et al. Epidemiological updates of post-traumatic related limb osteomyelitis in china: a 10 years multicentre cohort study. Int J Surg. 2023; 109(9): 2721-31.
Makihara K, Takegami Y, Tokutake K, Yamauchi K, Hiramatsu Y, Matsuura Y, et al. Risk factors for fracture-related infection after open reduction and internal fixation of proximal humerus fractures: a multicenter retrospective study of 496 fractures (TRON group study). Injury. 2022; 53(7): 2573-8.
Gaudias J. Antibiotic prophylaxis in orthopedics-traumatology. Orthop Traumatol Surg Res. 2021; 107(1): 102751.
Hassan S, Chan V, Stevens J, Stupans I, Gentle J. Surgical antimicrobial prophylaxis in open reduction internal fixation procedures at a metropolitan hospital in Australia: a retrospective audit. BMC Surg. 2021; 21(1): 404.
Tucker A, Henderson L, Moffatt R, Abela R, Troughton J, McMullan R, et al. Antibiotic prophylaxis regimens in trauma and orthopaedic surgery: are we providing adequate cover against colonizing organisms? Foot Ankle Spec. 2016; 9(4): 351-3.
Xu SG, Mao ZG, Liu BS, Zhu HH, Pan HL. Evaluating the use of antibiotic prophylaxis during open reduction and internal fixation surgery in patients at low risk of surgical site infection. Injury. 2015; 46(2): 184-8.
Cicero-Álvarez A, León-Hernández SR, Gutiérrez-Enríquez K, Zapata-Rivera S. Factores pronósticos de complicaciones postquirúrgicas en pacientes con infecciones óseas y seudoartrosis. Acta Ortop Mex. 2016; 30(5): 236-40. Disponible en: http://www.medigraphic.com/actaortopedica
Tucci G, Romanini E, Zanoli G, Pavan L, Fantoni M, Venditti M. Prevention of surgical site infections in orthopaedic surgery: a synthesis of current recommendations. Eur Rev Med Pharmacol Sci. 2019; 23(2 Suppl.): 224-39.
Shao J, Zhang H, Yin B, Li J, Zhu Y, Zhang Y. Risk factors for surgical site infection following operative treatment of ankle fractures: a systematic review and meta-analysis. Int J Surg. 2018; 56: 124-32.
Anderson BM, Wise BT, Joshi M, Castillo R, O'Toole RV, Richards JE. Admission hyperglycemia is a risk factor for deep surgical-site infection in orthopaedic trauma patients. J Orthop Trauma. 2021; 35(12): e451-7.
Richards JE, Kauffmann RM, Zuckerman SL, Obremskey WT, May AK. Relationship of hyperglycemia and surgical-site infection in orthopaedic surgery. J Bone Joint Surg Am. 2012; 94(13): 1181-6.
Shao J, Chang H, Zhu Y, Chen W, Zheng Z, Zhang H, et al. Incidence and risk factors for surgical site infection after open reduction and internal fixation of tibial plateau fracture: a systematic review and meta-analysis. Int J Surg. 2017; 41: 176-82.
Dy CJ, Little MTM, Berkes MB, Ma Y, Roberts TR, Helfet DL, et al. Meta-analysis of re-operation, nonunion, and infection after open reduction and internal fixation of patella fractures. J Trauma Acute Care Surg. 2012; 73(4): 928-32.
Dong X. Surgical site infection in upper extremity fracture: incidence and prognostic risk factors. Medicine (Baltimore). 2022; 101(35): e30460.
EVIDENCE LEVEL
IV