2024, Number 2
<< Back Next >>
rev homeostasis 2024; 6 (2)
SARS-CoV-2 y su papel potencial en la patogénesis del Síndrome de Guillain-Barré
Guzmán-Castellanos JF, Tamayo-Escorcia EA, Méndez-Cruz N, Martínez-Medina S
Language: Spanish
References: 59
Page:
PDF size: 250.51 Kb.
ABSTRACT
The recent pandemic caused by the novel coronavirus has generated significant
uncertainty in the medical field. Although the majority of patients experience
infection with the SARS-CoV-2 virus through the respiratory system, a
significant percentage also present with nonspecific neurological manifestations
such as headache, inattention, paresthesia, and anosmia. An increased risk of
developing Guillain-Barré Syndrome (GBS), an acute polyradiculoneuropathy
with typical post infectious presentation, has been observed in individuals
infected by the aforementioned virus. Despite cases linking these two diseases
being reported since early 2020, the pathogenesis remains a subject of
controversy. The most accepted theories include complement system
activation, excessive release of proinflammatory cytokines, molecular mimicry,
generation of free radicals through oxidative stress pathways, dysfunction of
the blood-brain barrier, and post-vaccination reaction. Additionally, it has been
suggested that GBS could be another manifestation of the post-COVID-19
syndrome. This narrative literature review aims to present the primary
pathophysiological theories of this causal relationship to date.
REFERENCES
Malekpour M, Khanmohammadi S, Meybodi MJE,Shekouh D, Rahmanian MR, Kardeh S, et al.COVID-19 as a trigger of Guillain-Barrésyndrome: A review of the molecularmechanism. Vol. 11, Immunity, Inflammationand Disease. John Wiley and Sons Inc; 2023.
Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, YangL, et al. Nervous system involvement afterinfection with COVID-19 and othercoronaviruses. Vol. 87, Brain, Behavior, andImmunity. Academic Press Inc.; 2020. p. 18–22.
Harapan BN, Yoo HJ. Neurological symptoms,manifestations, and complications associatedwith severe acute respiratory syndromecoronavirus 2 (SARS-CoV-2) and coronavirusdisease 19 (COVID-19). Vol. 268, Journal ofNeurology. Springer Science and Business MediaDeutschland GmbH; 2021. p. 3059–71.
Rosenblum HG, Hadler SC, Moulia D,Shimabukuro TT, Su JR, Tepper NK, et al.Morbidity and Mortality Weekly Report Use ofCOVID-19 Vaccines After Reports of AdverseEvents Among Adult Recipients of Janssen(Johnson & Johnson) and mRNA COVID-19Vaccines (Pfizer-BioNTech and Moderna):Update from the Advisory Committee onImmunization Practices-United States, July 2021[Internet]. Disponible en:https://gis.cdc.gov/grasp/COVIDNet/COVID19_3.html.
Patone M, Handunnetthi L, Saatci D, Pan J,Katikireddi SV, Razvi S, et al. Neurologicalcomplications after first dose of COVID-19vaccines and SARS-CoV-2 infection. Nat Med. el1 de diciembre de 2021;27(12):2144–53.
Rahimi K. Guillain-Barre syndrome duringCOVID-19 pandemic: an overview of thereports. Disponible en:https://doi.org/10.1007/s10072-020-04693-y
Keddie S, Pakpoor J, Mousele C, Pipis M,Machado PM, Foster M, et al. Epidemiologicaland cohort study finds no association betweenCOVID-19 and Guillain-Barré syndrome. Brain. el1 de febrero de 2021;144(2):682–93.
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J,et al. A Novel Coronavirus from Patients withPneumonia in China, 2019. New England Journalof Medicine. el 20 de febrero de2020;382(8):727–33.
World Health Organization. COVID-19dashboard. WHO Health EmergenciesProgramme. Consultada enhttps://data.who.int/dashboards/covid19/cases?n=c
Nguyen NT, Chinn J, de Ferrante M, Kirby KA,Hohmann SF, Amin A. Male gender is a predictorof higher mortality in hospitalized adults withCOVID-19. PLoS One. el 1 de julio de 2021;16(7July).
COVID-19 Treatment Guidelines 2 [Internet].Disponible en:https://www.covid19treatmentguidelines.nih.gov/
Lopez-Leon S, Wegman-Ostrosky T, Perelman C,Sepulveda R, Rebolledo PA, Cuapio A, et al.More than 50 Long-term effects of COVID-19: asystematic review and meta-analysisCorrespondence to. Disponible en:https://doi.org/10.1101/2021.01.27.21250617
Vogrig A, Moritz CP, Camdessanché JP, TholanceY, Antoine JC, Honnorat J, et al. Unclearassociation between COVID-19 andGuillain-Barré syndrome. Vol. 144, Brain. OxfordUniversity Press; 2021. p. E45.
Sejvar JJ, Baughman AL, Wise M, Morgan OW.Population incidence of Guillain-Barré syndrome:A systematic review and meta-analysis. Vol. 36,Neuroepidemiology. 2011. p. 123–33.
McGrogan A, Madle GC, Seaman HE, De VriesCS. The epidemiology of Guillain-Barrésyndrome worldwide: A systematic literaturereview. Vol. 32, Neuroepidemiology. 2009. p.150–63.
Fragiel M, Miró Ò, Llorens P, Jiménez S, Piñera P,Burillo G, et al. Incidence, clinical, risk factorsand outcomes of Guillain-Barré in Covid-19. AnnNeurol. el 1 de marzo de 2021;89(3):598–603.
Lamers MM, Haagmans BL. SARS-CoV-2pathogenesis. Vol. 20, Nature ReviewsMicrobiology. Nature Research; 2022. p. 270–84.
Osuchowski MF, Winkler MS, Skirecki T, CajanderS, Shankar-Hari M, Lachmann G, et al. TheCOVID-19 puzzle: deciphering pathophysiologyand phenotypes of a new disease entity. Vol. 9,The Lancet Respiratory Medicine. LancetPublishing Group; 2021. p. 622–42.
Habas K, Nganwuchu C, Shahzad F, Gopalan R,Haque M, Rahman S, et al. Resolution ofcoronavirus disease 2019 (COVID-19). Vol. 18,Expert Review of Anti-Infective Therapy. Taylorand Francis Ltd.; 2020. p. 1201–11.
Choi M, Aiello EA, Ennis IL, Villa-Abrille MC. TheRAAS and SARS-CoV-2: A riddle to solve.Hipertens Riesgo Vasc. el 1 de octubre de2020;37(4):169–75.
Jackson CB, Farzan M, Chen B, Choe H.Mechanisms of SARS-CoV-2 entry into cells. Vol.23, Nature Reviews Molecular Cell Biology.Nature Research; 2022. p. 3–20.
Li X, Geng M, Peng Y, Meng L, Lu S. Molecularimmune pathogenesis and diagnosis ofCOVID-19. Vol. 10, Journal of PharmaceuticalAnalysis. Xi’an Jiaotong University; 2020. p.102–8.
V’kovski P, Kratzel A, Steiner S, Stalder H, ThielV. Coronavirus biology and replication:implications for SARS-CoV-2. Vol. 19, NatureReviews Microbiology. Nature Research; 2021. p.155–70.
Kouhpayeh S, Shariati L, Boshtam M,Rahimmanesh I, Mirian M, Esmaeili Y, et al. Themolecular basis of covid-19 pathogenesis,conventional and nanomedicine therapy. Int JMol Sci. el 1 de junio de 2021;22(11).
Tomerak S, Khan S, Almasri M, Hussein R,Abdelati A, Aly A, et al. Systemic inflammation inCOVID-19 patients may induce various types ofvenous and arterial thrombosis: A systematicreview. Vol. 94, Scandinavian Journal ofImmunology. John Wiley and Sons Inc; 2021.
Manson JJ, Crooks C, Naja M, Ledlie A, GouldenB, Liddle T, et al. COVID-19-associatedhyperinflammation and escalation of patientcare: a retrospective longitudinal cohort study.Lancet Rheumatol. el 1 de octubre de2020;2(10):e594–602.
Gain C, Song S, Angtuaco T, Satta S, Kelesidis T.The role of oxidative stress in the pathogenesisof infections with coronaviruses. Vol. 13,Frontiers in Microbiology. Frontiers Media S.A.;2023.
Van Den Berg B, Walgaard C, Drenthen J, FokkeC, Jacobs BC, Van Doorn PA. Guillain-Barrésyndrome: Pathogenesis, diagnosis, treatmentand prognosis. Vol. 10, Nature ReviewsNeurology. Nature Publishing Group; 2014. p.469–82.
Berciano J. Axonal pathology in early stages ofGuillain-Barré syndrome. Neurología (EnglishEdition). julio de 2022;37(6):466–79.
Habib AA, Waheed W. Guillain-Barré Syndrome.Continuum (Minneap Minn). 2023 Oct1;29(5):1327-1356. doi:10.1212/CON.0000000000001289. PMID:37851033.
Van Doorn PA, Ruts L, Jacobs BC. Clinicalfeatures, pathogenesis, and treatment ofGuillain-Barré syndrome [Internet]. Vol. 7,www.thelancet.com/neurology. 2008. Disponibleen: www.thelancet.com/neurology
Cutillo G, Saariaho AH, Meri S. Physiology ofgangliosides and the role of antigangliosideantibodies in human diseases. Vol. 17, Cellularand Molecular Immunology. Springer Nature;2020. p. 313–22.
Kanda T, Iwasaki ; T, Yamawaki ; M, Tai ; T,Mizusawa H. Anti-GM1 antibody facilitatesleakage in an in vitro blood-nerve barrier model.2000.
Hagen KM, Ousman SS. The Neuroimmunologyof Guillain-Barré Syndrome and the PotentialRole of an Aging Immune System. Vol. 12,Frontiers in Aging Neuroscience. Frontiers MediaS.A.; 2021.
J C E Hafer-Macko JL, Sheikh KA, Li CY, Ho TW,Cornblath DR, McKhann GM, et al. ImmuneAttack on the Schwann Cell Surface i n AcuteIdammatory Demyehating PolvneuroDathvImmune attack on the Schwann cell surface inacute inflammatory demyelinating. Vol. 39, AnnNeurol. 1996.
Finsterer J. Triggers of Guillain–Barré Syndrome:Campylobacter jejuni Predominates. Vol. 23,International Journal of Molecular Sciences.MDPI; 2022.
Rahman RS, Bauthman MS, Alanazi AM, AlsillahNN, Alanazi ZM, Almuhaysin MI, et al.Guillain–Barré syndrome: pathophysiology,etiology, causes, and treatment. Int JCommunity Med Public Health. el 25 de junio de2021;8(7):3624.
Fujimoto T, Erickson MA, Banks WA.Neurotropism and blood-brain barrierinvolvement in COVID-19. Frontiers in DrugDelivery. el 14 de diciembre de 2022;2.
Lucchese G, Flöel A. SARS-CoV-2 andGuillain-Barré syndrome: molecular mimicry withhuman heat shock proteins as potentialpathogenic mechanism. Cell Stress Chaperones.el 1 de septiembre de 2020;25(5):731–5.
Hirzel C, Grandgirard D, Surial B, Wider MF,Leppert D, Kuhle J, et al. Neuro-axonal injury inCOVID-19: the role of systemic inflammationand SARS-CoV-2 specific immune response.Ther Adv Neurol Disord. el 1 de marzo de2022;15.
Felipe Cuspoca A, Isaac Estrada P,Velez-van-Meerbeke A. Molecular Mimicry ofSARS-CoV-2 Spike Protein in the NervousSystem: A Bioinformatics Approach. ComputStruct Biotechnol J. el 1 de enero de2022;20:6041–54.
Pascolini S, Vannini A, Deleonardi G, Ciordinik M,Sensoli A, Carletti I, et al. COVID-19 andImmunological Dysregulation: CanAutoantibodies be Useful? Clin Transl Sci. el 1 demarzo de 2021;14(2):502–8.
Lucchese G, Flöel A. SARS-CoV-2 andGuillain-Barré syndrome: molecular mimicry withhuman heat shock proteins as potentialpathogenic mechanism. Cell Stress Chaperones.el 1 de septiembre de 2020;25(5):731–5.
Ramos-Casals M, Brito-Zerón P, Mariette X.Systemic and organ-specific immune-relatedmanifestations of COVID-19. Vol. 17, NatureReviews Rheumatology. Nature Research; 2021.p. 315–32.
Ellul MA, Benjamin L, Singh B, Lant S, MichaelBD, Easton A, Kneen R, Defres S, Sejvar J,Solomon T. Neurological associations ofCOVID-19. Lancet Neurol. 2020Sep;19(9):767-783. doi:10.1016/S1474-4422(20)30221-0.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y,et al. Clinical features of patients infected with2019 novel coronavirus in Wuhan, China. TheLancet. el 15 de febrero de2020;395(10223):497–506.
Zhang J jin, Dong X, Cao Y yuan, Yuan Y dong,Yang Y bin, Yan Y qin, et al. Clinicalcharacteristics of 140 patients infected withSARS-CoV-2 in Wuhan, China. Allergy: EuropeanJournal of Allergy and Clinical Immunology. el 1de julio de 2020;75(7):1730–41.
Ochani RK, Kumar Ochani R, Asad A, Yasmin F,Shaikh S, Khalid H, et al. COVID-19 pandemic:from origins to outcomes. A comprehensivereview of viral pathogenesis, clinicalmanifestations, diagnostic evaluation, andmanagement. Vol. 20, Le Infezioni in Medicina,n. 2021.
Hedou M, Carsuzaa F, Chary E, Hainaut E,Cazenave-Roblot F, Masson Regnault M.Comment on ‘Cutaneous manifestations inCOVID-19: a first perspective’ by Recalcati S.Vol. 34, Journal of the European Academy ofDermatology and Venereology. BlackwellPublishing Ltd; 2020. p. e299–300.
Hu B, Guo H, Zhou P, Shi ZL. Characteristics ofSARS-CoV-2 and COVID-19. Vol. 19, NatureReviews Microbiology. Nature Research; 2021. p.141–54.
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J,et al. Clinical Characteristics of 138 HospitalizedPatients with 2019 Novel Coronavirus-InfectedPneumonia in Wuhan, China. JAMA - Journal ofthe American Medical Association. el 17 demarzo de 2020;323(11):1061–9.
Carvalho T, Krammer F, Iwasaki A. The first 12months of COVID-19: a timeline ofimmunological insights. Vol. 21, Nature ReviewsImmunology. Nature Research; 2021. p.245–56.
Spinato G, Fabbris C, Polesel J, Cazzador D,Borsetto D, Hopkins C, et al. Alterations in Smellor Taste in Mildly Symptomatic Outpatients withSARS-CoV-2 Infection. Vol. 323, JAMA - Journalof the American Medical Association. AmericanMedical Association; 2020. p. 2089–91.
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q,et al. Neurologic Manifestations of HospitalizedPatients with Coronavirus Disease 2019 inWuhan, China. JAMA Neurol. el 1 de junio de2020;77(6):683–90.
Pimentel V, Luchsinger VW, Carvalho GL, AlcaráAM, Esper NB, Marinowic D, et al. Guillain–Barrésyndrome associated with COVID-19: Asystematic review. Vol. 28, Brain, Behavior, andImmunity - Health. Elsevier Inc.; 2023.
Shahrizaila N, Lehmann HC, Kuwabara S.Guillain-Barré syndrome. Vol. 397, The Lancet.Elsevier B.V.; 2021. p. 1214–28.
Ruts L, Drenthen J, Jongen JLM, Hop WCJ,Visser GH, Jacobs BC, et al. Pain inGuillain-Barré syndrome A long-term follow-upstudy On behalf of the Dutch GBS Study Group[Internet]. 2010. Disponible en:www.neurology.org
Yuki N, Kokubun N, Kuwabara S, Sekiguchi Y, ItoM, Odaka M, et al. Guillain-Barré syndromeassociated with normal or exaggerated tendonreflexes. J Neurol. junio de2012;259(6):1181–90.
Al Othman B, Raabe J, Kini A, Lee AG. Update:The Miller Fisher variants of Guillain-Barrésyndrome. Curr Opin Ophthalmol. el 1 denoviembre de 2019;30(6):462–6.