2022, Number 4
Next >>
Biotecnol Apl 2022; 39 (4)
Obtention of green-synthesized silver nanoparticles and evaluation of its antimicrobial and antifungal activity against skin pathogenic microorganisms
Bakdi H, Lenchi N, Kebbouche-Gana S, Eddine DN
Language: English
References: 40
Page: 4201-4208
PDF size: 1869.84 Kb.
ABSTRACT
Bacterial resistance to antibiotics is a major public health problem. In this setting, silver nanoparticles (AgNPs), metal oxides and nanocarbons could be alternatives. Several issues arise when nanoparticles are obtained by chemical synthesis, including the use of toxic and hazardous chemicals. Otherwise, metallic nanoparticles are attractive in biomedical research. Hence, in this work, AgNPs were synthesized by the green route using olive and eucalyptus leaf extracts by an environmental-friendly technique. Both plants are locally obtainable, abundant, economical and eco-friendly. The synthesized AgNPs were characterized by ultraviolet-visible (UV-vis) spectrometry, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Their antibacterial and antifungal potential were tested by the well diffusion method against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella sp., Klebsiella pneumoniae and Candida albicans, and an o/w cream was formulated to be used as an alternative therapeutic approach against skin infections. AgNPs were validated by the UV-vis spectra obtained. FTIR spectrum assumed the polyphenols and proteins act as stabilizing and reducing agents in the synthesis of AgNPs. AgNPs were shown to have spherical morphologies by SEM analysis. The biosynthesized AgNPs showed their potential to inhibit growth of yeast, Gram-positive and -negative bacteria. The employed green synthesis route supported the obtention of biosynthetic AgNPs. Compared to metallic silver, AgNPs bear improved antibacterial and antifungal effect. The cream formulated shown properties consistent with future pharmaceutical applications. This combination of cutting-edge nanotechnology with traditional medicine provides a great opportunity to develop new antimicrobial agents.
REFERENCES
El-Seed HR., El-Shabasy RM, Khalifa,SAM, Saeed A, Shah A, Shah R, et al. Metalnanoparticles fabricated by green chemistryusing natural extracts: biosynthesis,mechanisms, and applications. RSC Adv. 2019;9(42):24539‑59.
Kwiecinsk JM, Kratofil RM, Parlet CP,Surewaard BGJ, Kubes P, Horswill AR.Staphylococcus aureus uses the ArlRSand MgrA cascade to regulate immuneevasion during skin infection. Cell Rep.2021;36(4):109462.
Sounouvou HT, Toukourou H, CatteauL, Toukourou F, Evrard B, Van Bambeke F,et al. Antimicrobial potentials of essentialoils extracted from West African aromaticplants on common skin infections. Sci Afr.2021;11:e00706.
Veeraraghavan VP, Periadura ND, KarunakaranT, Hussain S, Surapanen K M,Jiao X. Green synthesis of silver nanoparticlesfrom aqueous extract of Scutellariabarbata and coating on the cotton fabricfor antimicrobial applications and woundhealing activity in fibroblast cells (L929).Saudi J Biol Sci. 2021;28(7):3633‑40.
Restrepo CV, Villa CC. Synthesis of silvernanoparticles, influence of capping agents,and dependence on size and shape: A review.Environ Nanotechnol Monit Manag.2021;15:100428.
Tailor G, Yadav BL, Chaudhary J, JoshM, Suvalka C. Green synthesis of silvernanoparticles using Ocimum canum andtheir anti-bacterial activity. Biochem BiophysRep. 2020;24:100848.
Prakash Patil M, Seong YA, Kim JO, BaeSeo Y, Kim GD. Synthesis of silver nanoparticlesusing aqueous extract of Cuscutajaponica seeds and their antibacterial andantioxidant activities. Inorg Chem Commun.2021;134:109035.
Forough M, Farhadi K. Biological andgreen synthesis of silver nanoparticles. TurkJ Eng Environ Sci. 2010;34:281-7.
Dhar SA, Chowdhury RA, Das S, NahianMK, Islam D, Gafur MA. Plant-mediatedgreen synthesis and characterization ofsilver nanoparticles using Phyllanthusemblica fruit extract. Mater Today Proc.2021;42(5):1867-71.
Al-Otib F, Perveen K, Al-Saif NA,Alharb RI, Bokhar NA, Albasher G, et al.Biosynthesis of silver nanoparticles usingMalva parviflora and their antifungal activity.Saudi J Biol Sci. 2021;28(4):2229-35.
Uma D, Vikranth A, Meenambiga SS.A study on the green synthesis of silvernanoparticles from Olea europaea andits activity against oral pathogens. MaterToday Proc. 2020;44:3647-51.
Islam MA, Jacob MV, Antunes E. Acritical review on silver nanoparticles: Fromsynthesis and applications to its mitigationthrough low-cost adsorption by biochar. JEnviron Manage. 2021;281:111918.
Dakal TC, Kumar A, Majumdar RS,Yadav V. Mechanistic basis of antimicrobialactions of silver nanoparticles. FrontMicrobiol. 2016;7:1831.
Cho KH, Park JE, Osaka T, Park SG.The study of antimicrobial activity andpreservative effects of nanosilver ingredient.Electrochim Acta. 2005;51(5):956-60.
Kokura S, Handa O, Takag T, IshikawaT, Naito Y, Yoshikawa T. Silver nanoparticlesas a safe preservative for use in cosmetics.Nanomed Nanotechnol Biol Med.2010;6(4):570‑4.
Gajbhiye S, Sakharwade S. SilverNanoparticles in cosmetics. J Cosmet DermatolSci Appl. 2016;6(1):48‑53.
Mussin J, Robles-Botero V, Casañas-Pimentel R, Rojas F, Angiolella L, SanMartín-Martínez E, et al. Antimicrobialand cytotoxic activity of green synthesissilver nanoparticles targeting skin andsoft tissue infectious agents. Sci. Rep.2021;11(1):14566.
Khalil MMH, Ismail EH, El-MagdoubF. Biosynthesis of Au nanoparticles usingolive leaf extract. Arab J Chem.2012;5(4):431‑7.
Mo YY, Tang YK, Wang SY, Lin JM,Zhang HB, Luo DY. Green synthesis of silvernanoparticles using eucalyptus leaf extract.Mater Lett. 2013;144:165-7.
Rana A, Bhakuni Neg P, Gopal SahooN. Phytochemical screening and characterizationof bioactive compounds fromJuniperus squamata root extract. MaterToday Proc. 2021;48(3):672-5.
Alqetham A, Aldhebiani AY. Medicinalplants used in Jeddah, Saudi Arabia:Phytochemical screening. Saudi J Biol Sci.2021;28(1):805‑12.
OECD. Guideline for the testing ofchemicals. Test No. 404: Acute dermalirritation/corrosion. In: jnadkjnfnwffw.Paris: OECD Publishing; 2002 [cited 2022Sept 21]. Available from: https://doi.org/10.1787/97892604070622-en.
Parvizpour S, Masoudi-SobhanzadehY, Pourseif MM, Barzegar A, Razmara J,Omidi Y. Pharmacoinformatics-basedphytochemical screening for anticancerimpacts of yellow sweet clover, Melilotusofficinalis (Linn.) Pall. Comput Biol Med.2021;138:104921.
Rajeshkumar S, Bharath LV. Mechanismof plant-mediated synthesis ofsilver nanoparticles – A review on biomoleculesinvolved, characterisation andantibacterial activity. Chem Biol Interact.2017;273:219‑27.
Subramanian V. Green synthesis of silvernanoparticles using Coleus amboinicuslour, antioxitant activity and invitro cytotoxicityagainst Ehrlich’s Ascite carcinoma.J Pharm Res. 2012;5(2):1268-72.
Shankar SS, Ahmad A, Sastry M.Geranium leaf assisted biosynthesis ofsilver nanoparticles. Biotechnol Prog.2003;19(6):1627‑31.
Mulvaney P. Surface plasmon spectroscopyof nanosized metal particles.Langmuir. 1996;12(3):788‑800.
Benakashani F, Allafchian AR, JalaliSAH. Biosynthesis of silver nanoparticlesusing Capparis spinosa L. leaf extract andtheir antibacterial activity. Karbala Int JModern Sci. 2016;2(4):251-8.
Roopan SM, Rohit, Madhumitha G,Rahuman AA, Kamaraj C, Bharathi A, et al.Low-cost and eco-friendly phyto-synthesisof silver nanoparticles using Cocos nuciferacoir extract and its larvicidal activity. IndCrops Prod. 2013;43:631‑5.
Uma D, Vikranth A, Meenambiga SS.A study on the green synthesis of silvernanoparticles from Olea europaea andits activity against oral pathogens. MaterToday Proc. 2021;44(5):3647-51.
Suman TY, Radhika Rajasree SR,Kanchana A, Elizabeth SB. Biosynthesis,characterization and cytotoxic effect ofplant mediated silver nanoparticles usingMorinda citrifolia root extract. Colloids SurfB Biointerfaces. 2013;106:74‑8.
Pourmortazav SM, Taghdir M, MakarV, Rahimi-Nasrabadi M. Procedureoptimization for green synthesis of silvernanoparticles by aqueous extract ofEucalyptus oleosa. Spectrochim ActaA Mol Biomol Spectrosc. 2015;136:1249‑54.
Khalil MMH, Ismail EH, El-MagdoubF. Biosynthesis of Au nanoparticles usingolive leaf extract. Arab J Chem. 2012;5(4):431-7.
Abdel-Raouf N, Alharb RM, Al-Enaz NM, Alkhulaif MM, Ibraheem IBM.Rapid biosynthesis of silver nanoparticlesusing the marine red alga Laurenciacatarinensis and their characterization.Beni-Suef Univ J Basic Appl Sci. 2018;7(1):150‑7.
Khalil MMH, Ismail EH, El-BaghdadyKZ, Mohamed D. Green synthesis of silvernanoparticles using olive leaf extract andits antibacterial activity. Arab J Chem.2014;7(6):1131‑9.
Sosa IO, Noguez C, Barrera RG.Optical properties of metal nanoparticleswith arbitrary shapes. J Phys Chem B.2003;107(26):6269‑75.
Avilés-Castrillo JI, Quintanar-Guerrero D,Aguilar-Pérez KM, Medina DI. Biotriborheologyof shea butter solid lipid nanoparticles ina topical cream. Tribol Int. 2021;156:106836.
Lane ME. Skin penetration enhancers.Int J Pharm. 2013;447(1‑2):12‑21.
Nefedova E, Shkil N, Vazquez-GomezRL, Garibo D, Pestryakov A, BogdanchikovaN. AgNPs targeting the drugresistance problem of Staphylococcusaureus: Susceptibility to antibiotics andeff lux effect. Pharmaceutics. 2022;14:763.
Marín-Correa BM, Guzmán-Martínez N,Gómez-Ramírez M, Pless RC. Nanosilver gelas an endodontic alternative against Enterococcusfaecalis in an in vitro root canal systemin Mexican dental specimens. New Microbiol.2020;43(4):166-70.