2022, Número 4
Siguiente >>
Biotecnol Apl 2022; 39 (4)
Obención de nanopartículas de plata mediante síntesis verde y evaluación de sus actividades antifúngica y antibacteriana contra microorganismos patógenos de la piel
Bakdi H, Lenchi N, Kebbouche-Gana S, Eddine DN
Idioma: Ingles.
Referencias bibliográficas: 40
Paginas: 4201-4208
Archivo PDF: 1869.84 Kb.
RESUMEN
La resistencia bacteriana a antibióticos es un problema de salud pública muy significativo. Por ello, las nanopartículas metálicas, entre ellas las de plata (AgNPs), los óxidos metálicos y los nanocarbonos, han emergido como alternativas. No obstante, para su síntesis se emplea químicos tóxicos y riesgosos. Por lo tanto, en este trabajo se sintetizó AgNPs mediante el método de síntesis verde con una técnica ecoamigable, a partir de extractos de hojas de olivo y eucalipto. Ambas plantas son de alta disponibilidad local, económicamente asequibles y ambientalmente seguras. Las AgNPs fueron caracterizadas mediante las técnicas de espectrometría ultravioleta visible (UV-vis), microscopía electrónica de barrido (SEM), difracción de rayos X (XRD) y expectroscopía infrarroja de la transformada de Fourier (FTIR). El potencial antibacteriano y antifúngico se evaluó mediante el método de difusión en pocillo contra Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella sp., Klebsiella pneumoniae y Candida albicans. También se formuló una crema aceite en agua para el uso terapéutico contra infecciones de la piel. El método de síntesis empleado permitió obtener nanopartículas, luego validadas validadas por el espectro de UV-vis. El análisis FTIR indicó que los polifenoles y las proteínas actúan como agentes estabilizantes y reductores durante la síntesis. El análisis SEM mostró AgNPs de morfología esférica. Se demostró que las partículas mostraron potencial para inhibir el crecimiento de levaduras y bacterias Gram positivas y negativas, con mayor efecto que la plata metálica. La crema formulada permite desarrollos famacéuticos futuros. Esta combinación de la nanotecnología más actual con la medicina tradicional brinda una oportunidad para desarrollar nuevos agentes antimicrobianos.
REFERENCIAS (EN ESTE ARTÍCULO)
El-Seed HR., El-Shabasy RM, Khalifa,SAM, Saeed A, Shah A, Shah R, et al. Metalnanoparticles fabricated by green chemistryusing natural extracts: biosynthesis,mechanisms, and applications. RSC Adv. 2019;9(42):24539‑59.
Kwiecinsk JM, Kratofil RM, Parlet CP,Surewaard BGJ, Kubes P, Horswill AR.Staphylococcus aureus uses the ArlRSand MgrA cascade to regulate immuneevasion during skin infection. Cell Rep.2021;36(4):109462.
Sounouvou HT, Toukourou H, CatteauL, Toukourou F, Evrard B, Van Bambeke F,et al. Antimicrobial potentials of essentialoils extracted from West African aromaticplants on common skin infections. Sci Afr.2021;11:e00706.
Veeraraghavan VP, Periadura ND, KarunakaranT, Hussain S, Surapanen K M,Jiao X. Green synthesis of silver nanoparticlesfrom aqueous extract of Scutellariabarbata and coating on the cotton fabricfor antimicrobial applications and woundhealing activity in fibroblast cells (L929).Saudi J Biol Sci. 2021;28(7):3633‑40.
Restrepo CV, Villa CC. Synthesis of silvernanoparticles, influence of capping agents,and dependence on size and shape: A review.Environ Nanotechnol Monit Manag.2021;15:100428.
Tailor G, Yadav BL, Chaudhary J, JoshM, Suvalka C. Green synthesis of silvernanoparticles using Ocimum canum andtheir anti-bacterial activity. Biochem BiophysRep. 2020;24:100848.
Prakash Patil M, Seong YA, Kim JO, BaeSeo Y, Kim GD. Synthesis of silver nanoparticlesusing aqueous extract of Cuscutajaponica seeds and their antibacterial andantioxidant activities. Inorg Chem Commun.2021;134:109035.
Forough M, Farhadi K. Biological andgreen synthesis of silver nanoparticles. TurkJ Eng Environ Sci. 2010;34:281-7.
Dhar SA, Chowdhury RA, Das S, NahianMK, Islam D, Gafur MA. Plant-mediatedgreen synthesis and characterization ofsilver nanoparticles using Phyllanthusemblica fruit extract. Mater Today Proc.2021;42(5):1867-71.
Al-Otib F, Perveen K, Al-Saif NA,Alharb RI, Bokhar NA, Albasher G, et al.Biosynthesis of silver nanoparticles usingMalva parviflora and their antifungal activity.Saudi J Biol Sci. 2021;28(4):2229-35.
Uma D, Vikranth A, Meenambiga SS.A study on the green synthesis of silvernanoparticles from Olea europaea andits activity against oral pathogens. MaterToday Proc. 2020;44:3647-51.
Islam MA, Jacob MV, Antunes E. Acritical review on silver nanoparticles: Fromsynthesis and applications to its mitigationthrough low-cost adsorption by biochar. JEnviron Manage. 2021;281:111918.
Dakal TC, Kumar A, Majumdar RS,Yadav V. Mechanistic basis of antimicrobialactions of silver nanoparticles. FrontMicrobiol. 2016;7:1831.
Cho KH, Park JE, Osaka T, Park SG.The study of antimicrobial activity andpreservative effects of nanosilver ingredient.Electrochim Acta. 2005;51(5):956-60.
Kokura S, Handa O, Takag T, IshikawaT, Naito Y, Yoshikawa T. Silver nanoparticlesas a safe preservative for use in cosmetics.Nanomed Nanotechnol Biol Med.2010;6(4):570‑4.
Gajbhiye S, Sakharwade S. SilverNanoparticles in cosmetics. J Cosmet DermatolSci Appl. 2016;6(1):48‑53.
Mussin J, Robles-Botero V, Casañas-Pimentel R, Rojas F, Angiolella L, SanMartín-Martínez E, et al. Antimicrobialand cytotoxic activity of green synthesissilver nanoparticles targeting skin andsoft tissue infectious agents. Sci. Rep.2021;11(1):14566.
Khalil MMH, Ismail EH, El-MagdoubF. Biosynthesis of Au nanoparticles usingolive leaf extract. Arab J Chem.2012;5(4):431‑7.
Mo YY, Tang YK, Wang SY, Lin JM,Zhang HB, Luo DY. Green synthesis of silvernanoparticles using eucalyptus leaf extract.Mater Lett. 2013;144:165-7.
Rana A, Bhakuni Neg P, Gopal SahooN. Phytochemical screening and characterizationof bioactive compounds fromJuniperus squamata root extract. MaterToday Proc. 2021;48(3):672-5.
Alqetham A, Aldhebiani AY. Medicinalplants used in Jeddah, Saudi Arabia:Phytochemical screening. Saudi J Biol Sci.2021;28(1):805‑12.
OECD. Guideline for the testing ofchemicals. Test No. 404: Acute dermalirritation/corrosion. In: jnadkjnfnwffw.Paris: OECD Publishing; 2002 [cited 2022Sept 21]. Available from: https://doi.org/10.1787/97892604070622-en.
Parvizpour S, Masoudi-SobhanzadehY, Pourseif MM, Barzegar A, Razmara J,Omidi Y. Pharmacoinformatics-basedphytochemical screening for anticancerimpacts of yellow sweet clover, Melilotusofficinalis (Linn.) Pall. Comput Biol Med.2021;138:104921.
Rajeshkumar S, Bharath LV. Mechanismof plant-mediated synthesis ofsilver nanoparticles – A review on biomoleculesinvolved, characterisation andantibacterial activity. Chem Biol Interact.2017;273:219‑27.
Subramanian V. Green synthesis of silvernanoparticles using Coleus amboinicuslour, antioxitant activity and invitro cytotoxicityagainst Ehrlich’s Ascite carcinoma.J Pharm Res. 2012;5(2):1268-72.
Shankar SS, Ahmad A, Sastry M.Geranium leaf assisted biosynthesis ofsilver nanoparticles. Biotechnol Prog.2003;19(6):1627‑31.
Mulvaney P. Surface plasmon spectroscopyof nanosized metal particles.Langmuir. 1996;12(3):788‑800.
Benakashani F, Allafchian AR, JalaliSAH. Biosynthesis of silver nanoparticlesusing Capparis spinosa L. leaf extract andtheir antibacterial activity. Karbala Int JModern Sci. 2016;2(4):251-8.
Roopan SM, Rohit, Madhumitha G,Rahuman AA, Kamaraj C, Bharathi A, et al.Low-cost and eco-friendly phyto-synthesisof silver nanoparticles using Cocos nuciferacoir extract and its larvicidal activity. IndCrops Prod. 2013;43:631‑5.
Uma D, Vikranth A, Meenambiga SS.A study on the green synthesis of silvernanoparticles from Olea europaea andits activity against oral pathogens. MaterToday Proc. 2021;44(5):3647-51.
Suman TY, Radhika Rajasree SR,Kanchana A, Elizabeth SB. Biosynthesis,characterization and cytotoxic effect ofplant mediated silver nanoparticles usingMorinda citrifolia root extract. Colloids SurfB Biointerfaces. 2013;106:74‑8.
Pourmortazav SM, Taghdir M, MakarV, Rahimi-Nasrabadi M. Procedureoptimization for green synthesis of silvernanoparticles by aqueous extract ofEucalyptus oleosa. Spectrochim ActaA Mol Biomol Spectrosc. 2015;136:1249‑54.
Khalil MMH, Ismail EH, El-MagdoubF. Biosynthesis of Au nanoparticles usingolive leaf extract. Arab J Chem. 2012;5(4):431-7.
Abdel-Raouf N, Alharb RM, Al-Enaz NM, Alkhulaif MM, Ibraheem IBM.Rapid biosynthesis of silver nanoparticlesusing the marine red alga Laurenciacatarinensis and their characterization.Beni-Suef Univ J Basic Appl Sci. 2018;7(1):150‑7.
Khalil MMH, Ismail EH, El-BaghdadyKZ, Mohamed D. Green synthesis of silvernanoparticles using olive leaf extract andits antibacterial activity. Arab J Chem.2014;7(6):1131‑9.
Sosa IO, Noguez C, Barrera RG.Optical properties of metal nanoparticleswith arbitrary shapes. J Phys Chem B.2003;107(26):6269‑75.
Avilés-Castrillo JI, Quintanar-Guerrero D,Aguilar-Pérez KM, Medina DI. Biotriborheologyof shea butter solid lipid nanoparticles ina topical cream. Tribol Int. 2021;156:106836.
Lane ME. Skin penetration enhancers.Int J Pharm. 2013;447(1‑2):12‑21.
Nefedova E, Shkil N, Vazquez-GomezRL, Garibo D, Pestryakov A, BogdanchikovaN. AgNPs targeting the drugresistance problem of Staphylococcusaureus: Susceptibility to antibiotics andeff lux effect. Pharmaceutics. 2022;14:763.
Marín-Correa BM, Guzmán-Martínez N,Gómez-Ramírez M, Pless RC. Nanosilver gelas an endodontic alternative against Enterococcusfaecalis in an in vitro root canal systemin Mexican dental specimens. New Microbiol.2020;43(4):166-70.