2024, Number 1
<< Back Next >>
Rev Med UAS 2024; 14 (1)
Purinergic signaling: Metabolic pathways and signaling pathways associated with cancer
Martínez-Zavala R, Hernández-Aragón LG, Avelino-Cruz JE, Galindo-Ramírez F
Language: Spanish
References: 86
Page: 87-102
PDF size: 572.60 Kb.
ABSTRACT
The actions of Purinergic receptors on the cells depend on receptor subtype, cell types, and health conditions (normal or tumoral cells). This review aims to identify and analyze metabolic pathways depending on purinergic receptors associated with cancer cell progression. In different kinds of cancer, ATP was seen to increase in the tumor microenvironment, and participates in the mainte-nance, proliferation, migration, and survival, through purinergic receptors P2. In addition, ATP can be degraded to adenosine, which has also been linked to survival and proliferation through the activation of P1 receptors in cancer cells. It has been proposed that reducing the concentration of extracellular ATP, adenosine, and the activation of purinergic receptors would be of great relevance in the application of different antitumor treatments.
REFERENCES
Drury AN, Szent-Györgyi A. The physiologi-cal activity of adenine compounds with spe-cial reference to their action upon the mam-malian heart. J Physiol. 1929;68(3):213–37.
Burnstock G. Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci. 2006;27(3):166–76.
Burnstock G. Purinergic nerves. Pharmacol Rev. 1972;24(3):509–81.
Newby AC. Adenosine and the concept of “retaliatory metabolites”. Trends Biochem Sci. 1983;8:42–44.
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine re-ceptors: The state of the art. Physiol Rev. 2018;98(3):1591–625.
Verkhratsky A, Burnstock G. Biology of puri-nergic signalling: its ancient evolutionary roots, its omnipresence and its multiple fun-ctional significance. BioEssays. 2014;36(7):697–705.
Björkgren I, Lishko PV. Purinergic signaling in testes revealed. J Gen Physiol. 2016;148(3):207–11.
Piirainen H, Ashok Y, Nanekar RT, Jaakola VP. Structural features of adenosine recep-tors: from crystal to function. Biochim Biop-hys Acta. 2011;1808(5):1233–44.
Allen-Gipson DS, Wong J, Spurzem JR, Sis-son JH, Wyatt TA. Adenosine A2A receptors promote adenosine-stimulated wound healing in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2006;290(5):L849–55.
Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang LH. Understanding the ro-les of the P2X7 receptor in solid tumour pro-gression and therapeutic perspectives. Bio-chim Biophys Acta. 2015;1848(10 Pt B):2584–602.
Franco R, Cordomí A, Llinas Del Torrent C, Lillo A, Serrano-Marín J, Navarro G, et al. Structure and function of adenosine receptor heteromers. Cell Mol Life Sci. 2021;78(8):3957–68.
Illes P, Müller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, et al. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol. 2021;178(3):489–514.
Sattler C, Benndorf K. Enlightening activa-tion gating in P2X receptors. Purinergic Sig-nal. 2022;18(2):177–91.
Schmid R, Evans RJ. ATP-gated P2X recep-tor channels: Molecular insights into functio-nal roles. Annu Rev Physiol. 2019;81:43–62.
Lovászi M, Branco Haas C, Antonioli L, Pa-cher P, Haskó G. The role of P2Y receptors in regulating immunity and metabolism. Bio-chem Pharmacol. 2021;187:114419.
Rafehi M, Müller CE. Tools and drugs for uracil nucleotide-activated P2Y receptors. Pharmacol Ther. 2018;190:24–80.
Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular ATP and P2 puri-nergic signalling in the tumour microenviron-ment. Nat Rev Cancer. 2018;18(10):601–18
Draganov D, Lee PP. Purinergic signaling within the tumor microenvironment. Adv Exp Med Biol. 2021;1270:73–87.
Ohta D, Lee PP. Purinergic signaling within the tumor microenvironment. Adv Exp Med Biol. 2012;1270:73–87.
Morote-Garcia JC, Rosenberger P, Kuhlicke J, Eltzschig HK. HIF-1-dependent repression of adenosine kinase attenuates hypoxia-in-duced vascular leak. Blood. 2008;111:5571–80.
Ohta A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol. 2016;7:109.
Deaglio S, Robson SC. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol. 2011;61:301–32.
Vultaggio-Poma V, Sarti AC, Di Virgilio F. Extracellular ATP: A feasible target for can-cer therapy. Cells. 2020;9(11):2496.
Alvarez CL, Troncoso MF, Espelt MV. Extra-cellular ATP and adenosine in tumor micro-environment: Roles in epithelial-mesenchy-mal transition, cell migration, and invasion. J Cell Physiol. 2022;237(1):389–400.
Pellegatti P, Raffaghello L, Bianchi G, Pic-cardi F, Pistoia V, Di Virgilio F. Increased le-vel of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One. 2008;3(7):e2599.
Dosch M, Gerber J, Jebbawi F, Beldi G. Me-chanisms of ATP release by inflammatory cells. Int J Mol Sci. 2018;19(4):1222.
Gilbert SM, Oliphant CJ, Hassan S, Peille AL, Bronsert P, Falzoni S, et al. ATP in the tumour microenvironment drives expression of nfP2X7, a key mediator of cancer cell sur-vival. Oncogene. 2019;38(2):194–208.
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: No-vel checkpoint inhibitor targets. Immunol Rev. 2017;276(1):121–44.
Jeffrey JL, Lawson KV, Powers JP. Targe-ting metabolism of extracellular nucleotides via inhibition of ectonucleotidases CD73 and CD39. J Med Chem. 2020;63(22):13444–65.
Blay J, White TD, Hoskin DW. The extrace-llular fluid of solid carcinomas contains im-munosuppressive concentrations of adeno-sine. Cancer Res. 1997;57(13):2602–5.
Qian Y, Wang X, Liu Y, Li Y, Colvin RA, Tong L, et al. Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells. Cancer Lett. 2014;351(2):242–51.
Lohman AW, Billaud M, Isakson BE. Mecha-nisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res. 2012;95(3):269–80.
Wei L, Mousawi F, Li D, Roger S, Li J, Yang X, et al. Adenosine triphosphate release and P2 receptor signaling in Piezo1 channel-de-pendent mechanoregulation. Front Pharma-col. 2019;10:1304.
Locovei S, Wang J, Dahl G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 2006;580(1):239–44.
Yang D, He Y, Muńoz-Planillo R, Liu Q, Nú-ńez G. Caspase-11 requires the Pannexin-1 channel and the purinergic P2X7 pore to me-diate pyroptosis and endotoxic shock. Immu-nity. 2015;43(5):923–32.
Narahari AK, Kreutzberger AJ, Gaete PS, Chiu YH, Leonhardt SA, Medina CB, et al. ATP and large signaling metabolites flux through caspase-activated Pannexin 1 chan-nels. eLife. 2021;10:e64787.
Boassa D, Qiu F, Dahl G, Sosinsky G. Traf-ficking dynamics of glycosylated pannexin 1 proteins. Cell Commun Adhes. 2008;15(1):119–32.
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, et al. P2X7 in can-cer: From molecular mechanisms to thera-peutics. Front Pharmacol. 2020;11:793.
Grassi F, De Ponte Conti B. The P2X7 re-ceptor in tumor immunity. Front Cell Dev Biol. 2021;9:694831.
Alvarez CL, Troncoso MF, Espelt MV. Extra-cellular ATP and adenosine in tumor micro-environment: Roles in epithelial-mesenchy-mal transition, cell migration, and invasion. J Cell Physiol. 2022;237(1):389–400.
Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, et al. ATP and cancer immunosurveillance. EMBO J. 2021;40(13):e108130.
Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, Robson SC. CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation. Br J Haematol. 2008;142(4):627–37.
Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflamma-tion. Trends Mol Med. 2013;19(6):355–67.
Sträter N. Ecto-5'-nucleotidase: Structure function relationships. Purinergic Signal. 2006;2(2):343–50. DOI: 10.1007/s11302-006-9000-8.
Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: Important modula-tors of purinergic signalling cascade. Bio-chim Biophys Acta. 2008;1783(5):673–94.
Bao X, Xie L. Targeting purinergic pathway to enhance radiotherapy-induced immuno-genic cancer cell death. J Exp Clin Cancer Res. 2022;41(1):222.
Katz S, Ayala V, Santillán G, Boland R. Acti-vation of the PI3K/Akt signaling pathway through P2Y₂ receptors by extracellular ATP is involved in osteoblastic cell proliferation. Arch Biochem Biophys. 2011;513(2):144–52.
Bilbao PS, Santillán G, Boland R. ATP sti-mulates the proliferation of MCF-7 cells through the PI3K/Akt signaling pathway. Arch Biochem Biophys. 2010;499(1-2):40–48.
Bian S, Sun X, Bai A, Zhang C, Li L, Enjyoji K, et al. P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death. PLoS One. 2013;8(4):e60184.
Zhang JL, Liu Y, Yang H, Zhang HQ, Tian XX, Fang WG. ATP-P2Y2-β-catenin axis promotes cell invasion in breast cancer cells. Cancer Sci. 2017;108(7):1318–27.
Song S, Jacobson KN, McDermott KM, Reddy SP, Cress AE, Tang H, et al. ATP promotes cell survival via regulation of cyto-solic [Ca2+] and Bcl-2/Bax ratio in lung can-cer cells. Am J Physiol Cell Physiol. 2016;310(2):C99–C114.
Placet M, Arguin G, Molle CM, Babeu JP, Jo-nes C, Carrier JC, et al. The G protein-cou-pled P2Y₆ receptor promotes colorectal can-cer tumorigenesis by inhibiting apoptosis. Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt A):1539–51.
Wan H, Xie R, Xu J, He J, Tang B, Liu Q, et al. Anti-proliferative effects of nucleotides on gastric cancer via a novel P2Y6/SOCE/Ca2+/β-catenin pathway. Sci Rep. 2017;7(1):2459.
Feng LL, Cai YQ, Zhu MC, Xing LJ, Wang X. The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Can-cer Cell Int. 2020;20:110.
Zhang Y, Cheng H, Li W, Wu H, Yang Y. Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling. Int J Cancer. 2019;145(4):1068–82.
Zelentsova AS, Deykin AV, Soldatov VO, Ulezko AA, Borisova AY, Belyaeva VS, et al. P2X7 receptor and purinergic signaling: or-chestrating mitochondrial dysfunction in neu-rodegenerative diseases. eNeuro. 2022;9(6):0092-22.2022.
Zhang WJ. Effect of P2X purinergic recep-tors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Sig-nal. 2021;17(1):151–62.
Vigano S, Alatzoglou D, Irving M, Menétrier-Caux C, Caux C, Romero P, et al. Targeting adenosine in cancer immunotherapy to en-hance T-cell function. Front Immunol. 2019;10:925.
Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.
Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer prolifera-tion. Cancer Metab. 2015;3(1):1.
DeBerardinis RJ, Chandel NS. Fundamen-tals of cancer metabolism. Sci Adv. 2016;2(5):e1600200.
Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17(4):351–9.
Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619–34.
Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277(34):30409–12.
Cantor JR, Sabatini DM. Cancer cell meta-bolism: one hallmark, many faces. Cancer Discov. 2012;2(10):881–98.
Koundouros N, Poulogiannis G. Reprogram-ming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22.
Sang N, He D, Qie S. Glutamine metabolism and cancer. In: Boffetta P, Hainaut P, edi-tors. Encyclopedia of Cancer, Third Edition. Academic Press; 2019. p.179–86.
Bernfeld E, Foster DA. Glutamine as an es-sential amino acid for KRas-driven cancer cells. Trends Endocrinol Metab. 2019;30(6):357–68.
Savio LE, Leite-Aguiar R, Alves VS, Cou-tinho-Silva R, Wyse AT. Purinergic signaling in the modulation of redox biology. Redox Biol. 2021;47:102137.
Patel D, Menon D, Bernfeld E, Mroz V, Kalan S, Loayza D, et al. Aspartate rescues S-phase arrest caused by suppression of glu-tamine utilization in KRas-driven cancer ce-lls. J Biol Chem. 2016;291(17):9322–9.
Li T, Le A. Glutamine metabolism in cancer. Adv Exp Med Biol. 2018;1063:13–32.
Estévez-García IO, Cordoba-Gonzalez V, Lara-Padilla E, Fuentes-Toledo A, Falfán-Valencia R, Campos-Rodríguez R, et al. Glucose and glutamine metabolism control by APC and SCF during the G1-to-S phase transition of the cell cycle. J Physiol Bio-chem. 2014;70(2):569–81.
Infantino V, Santarsiero A, Convertini P, To-disco S, Iacobazzi V. Cancer cell metabo-lism in hypoxia: Role of HIF-1 as key regula-tor and therapeutic target. Int J Mol Sci. 2021;22(11):5703.
Korbecki J, Simińska D, Gąssowska-Dobro-wolska M, Listos J, Gutowska I, Chlubek D, et al. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review. Int J Mol Sci. 2021;22(19):10701.
Yuan TL, Cantley LC. PI3K pathway altera-tions in cancer: variations on a theme. Onco-gene. 2008;27(41):5497–510.
Popova NV, Jücker M. The role of mTOR signaling as a therapeutic target in cancer. Int J Mol Sci. 2021;22(4):1743.
Hoxhaj G, Manning BD. The PI3K-AKT net-work at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20(2):74–88.
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, et al. From purines to puri-nergic signalling: molecular functions and human diseases. Signal Transduct Target Ther. 2021;6(1):162.
Jain S, Jacobson KA. Purinergic signaling in diabetes and metabolism. Biochem Pharma-col. 2021;187:114393.
Campos-Contreras AD, Díaz-Muńoz M, Váz-quez-Cuevas FG. Purinergic signaling in the hallmarks of cancer. Cells. 2020;9(7):1612.
Agteresch HJ, Dagnelie PC, Rietveld T, van den Berg JW, Danser AH, Wilson JH. Phar-macokinetics of intravenous ATP in cancer patients. Eur J Clin Pharmacol. 2000;56(1):49–55.
Moesta AK, Li XY, Smyth MJ. Targeting CD39 in cancer. Nat Rev Immunol. 2020;20(12):739–55.
Urtreger AJ, Diament MJ, Ranuncolo SM, Del C Vidal M, Puricelli LI, Klein SM, et al. New murine cell line derived from a sponta-neous lung tumor induces paraneoplastic syndromes. Int J Oncol. 2001;18(3):639–47.
Boison D, Yegutkin GG. Adenosine metabo-lism: Emerging concepts for cancer therapy. Cancer Cell. 2019;36(6):582–96.
Li Y, Zhao L, Li XF. Hypoxia and the tumor microenvironment. Technol Cancer Res Treat. 2021;20:15330338211036304.