2023, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2023; 26 (1)
Biopeptides derived from pseudocereals: Amaranth, Quinoa, Chia and Buckwheat
Reyes-Bautista R, Barajas-Segoviano M, Flores-Sierra JJ, Hernández-Mendoza G, Xoca-Orozco LÁ
Language: Spanish
References: 108
Page: 1-27
PDF size: 682.34 Kb.
ABSTRACT
Plant-based proteins are of great interest to the world's population for being a safe and sustainable supply as they leave a smaller
carbon footprint. They are found in pseudocereals: Amaranth, Quinoa, Chia and Buckwheat that have been consumed since
ancient times. These plants do not belong to the cereal family, but they have similar properties and uses, however, they are
currently little exploited; Their proteins with an ideal amino acid composition make them a beneficial food for human health.
The objective of this review is to present what has been investigated regarding these proteins and hydrolysates, their general
characteristics according to the Osborne classification (albumins, globulins, prolamins and glutelins), an evaluation after their
purification and identification, the production of peptides through enzymatic hydrolysis (in vitro and in vivo), fermentation
by specific microorganisms, their pharmacological activities such as antihypertensive, antidiabetic, antioxidants, anticancer,
antimicrobial, among other benefits that have increased their relevance.
REFERENCES
Alonso-Miravalles, L. & O’Mahony, J. (2018). Composition,Protein Profile and Rheological Properties of Pseudocereal-Based Protein-Rich Ingredients. Foods, 7(5), 73. https://doi.org/10.3390/foods7050073
Aluko, R. E. & Monu, E. (2003). Functional and BioactiveProperties of Quinoa Seed Protein Hydrolysates.Journal of Food Science, 68(4), 1254–1258. https://doi.org/10.1111/j.1365-2621.2003.tb09635.x
Álvarez-Jubete, L., Auty, M., Arendt, E. K. & Gallagher,E. (2010). Baking properties and microstructure ofpseudocereal flours in gluten-free bread formulations.European Food Research and Technology, 230(3), 437–445.https://doi.org/10.1007/s00217-009-1184-z
Amézqueta, S., Galán, E., Vila-Fernández, I., Pumarola, S.,Carrascal, M., Abian, J., Ribas-Barba, L., Serra-Majem,L. & Torres, J. L. (2013). The presence of d-fagomine inthe human diet from buckwheat-based foodstuffs. FoodChemistry, 136(3–4), 1316–1321. https://doi.org/10.1016/j.foodchem.2012.09.038
Ando, H., Chen, Y.-C., Tang, H., Shimizu, M., Watanabe, K.& Mitsunaga, T. (2002). Food Components in Fractionsof Quinoa Seed. Food Science and Technology Research,8(1), 80–84. https://doi.org/10.3136/fstr.8.80
Ávila Ruiz, G., Arts, A., Minor, M. & Schutyser, M. (2016). AHybrid Dry and Aqueous Fractionation Method to ObtainProtein-Rich Fractions from Quinoa (Chenopodium quinoaWilld.). Food and Bioprocess Technology, 9(9), 1502–1510.https://doi.org/10.1007/s11947-016-1731-0
Baggio, L. L. & Drucker, D. J. (2007). Biology of Incretins:GLP-1 and GIP. Gastroenterology, 132(6), 2131–2157.https://doi.org/10.1053/j.gastro.2007.03.054
Barba de la Rosa, A. P., Barba Montoya, A., Martínez-Cuevas,P., Hernández-Ledesma, B., León-Galván, M. F., de León-Rodríguez, A. & González, C. (2010). Tryptic amaranthglutelin digests induce endothelial nitric oxide productionthrough inhibition of ACE: Antihypertensive role ofamaranth peptides. Nitric Oxide, 23(2), 106–111. https://doi.org/10.1016/j.niox.2010.04.006
Bressani, R. (1989). The proteins of grain amaranth.Food Reviews International, 5(1), 13–38. https://doi.org/10.1080/87559128909540843
Brinegar, C. & Goundan, S. (1993). Isolation and characterizationof chenopodin, the 11S seed storage protein of quinoa(Chenopodium quinoa). Journal of Agricultural andFood Chemistry, 41(2), 182–185. https://doi.org/10.1021/jf00026a006
Búcaro Segura, M. E. & Bressan, R. (2002). Distribución de laproteína en fracciones físicas de la molienda y tamizadodel grano de amaranto. Archivos Latinoamericanos deNutrición, 52(2), 167–171.
Carrasco, E. & Soto, J. L. (2010). Importancia de los granosandinos. In Granos andinos: avances, logros y experienciasdesarrolladas en quinoa, canihua y kiwicha en Perú (R.V. K. A. S. P. and M. Jagger. R. Bravo, Ed.). BiodiversityInternational. Roma, Italia.
Ciudad-Mulero, M., Fernández-Ruiz, V., Matallana-González,M. C. & Morales, P. (2019). Dietary fiber sources andhuman benefits: The case study of cereal and pseudocereals.Advances in Food and Nutrition Research, 90, 83–134.https://doi.org/10.1016/BS.AFNR.2019.02.002
Coelho, M., Aquino, A.S.D., Latorres, M. J. & Salas-Mellado, M.D. L. M (2019). In vitro and in vivo antioxidant capacity ofchia protein hydrolysates and peptides. Food Hydrocolloids,91, 19–25. https://doi.org/10.1016/j.foodhyd.2019.01.018
Coelho, M. S., Soares-Freitas, R. A. M., Arêas, J. A. G., Gandra,E. A. & Salas-Mellado, M. de las M. (2018). Peptides fromChia Present Antibacterial Activity and Inhibit CholesterolSynthesis. Plant Foods for Human Nutrition, 73(2), 101–107. https://doi.org/10.1007/s11130-018-0668-z
Cui, X., Du, J., Li, J. & Wang, Z. (2018). Inhibitory site ofα-hairpinin peptide from tartary buckwheat has no effect onits antimicrobial activities. Acta Biochimica et BiophysicaSinica, 50(4), 408–416. https://doi.org/10.1093/abbs/gmy015
D’Amico, S., Jungkunz, S., Balasz, G., Foeste, M., Jekle, M.,Tömösköszi, S. & Schoenlechner, R. (2019). Abrasivemilling of quinoa: Study on the distribution of selectednutrients and proteins within the quinoa seed kernel. Journalof Cereal Science, 86, 132–138. https://doi.org/10.1016/j.jcs.2019.01.007
de Castro, R. J. S. & Sato, H. H. (2015). Biologically activepeptides: Processes for their generation, purification andidentification and applications as natural additives inthe food and pharmaceutical industries. Food ResearchInternational, 74, 185–198. https://doi.org/10.1016/j.foodres.2015.05.013
de la Cruz-Torres, E. & Garcia-Andrade, J. M. (2007).Mejoramiento de pseudocereales en el ININ. ContactoNuclear, 48, 35–40.
Delgado, M. C. O., Galleano, M., Añón, M. C. & Tironi, V. A.(2015). Amaranth Peptides from Simulated GastrointestinalDigestion: Antioxidant Activity Against Reactive Species.Plant Foods for Human Nutrition, 70(1), 27–34. https://doi.org/10.1007/s11130-014-0457-2
Dodok, L., Modhir, A. A., Buchtová, V., Halásová, G. & Poláček,I. (1997). Importance and utilization of amaranth in foodindustry. Part 2. Composition of amino acids and fatty acids.Food / Nahrung, 41(2), 108–110. https://doi.org/10.1002/food.19970410211
Dong, S., Yang, X., Zhao, L., Zhang, F., Hou, Z. & Xue, P. (2020).Antibacterial activity and mechanism of action saponinsfrom Chenopodium quinoa Willd. husks against foodbornepathogenic bacteria. Industrial Crops and Products, 149,112350. https://doi.org/10.1016/j.indcrop.2020.112350
FAOASTAT. (2015). Food and Agriculture Organization ofthe United Nations. Food Security and the Right to Food.
FAOSTAT. (2018). Food and Agriculture Organization of theUnited Nations. FAOSTAT Online Database.
Galvez, A. F., Chen, N., Macasieb, J. & de Lumen, B. O. (2001).Chemopreventive property of a soybean peptide (lunasin)that binds to deacetylated histones and inhibits acetylation.Cancer Research, 61(20), 7473–7478.
Giménez-Bastida, J. A. & Zieliński, H. (2015). Buckwheat asa Functional Food and Its Effects on Health. Journal ofAgricultural and Food Chemistry, 63(36), 7896–7913.https://doi.org/10.1021/acs.jafc.5b02498
González-Aguilar, G. A., González-Córdova, A. F., VallejoCordoba, E., Álvarez-Parrilla, E. & García, H. S. (2014).Los Alimentos Funcionales: Un nuevo reto para la industriade alimentos (AGT). México.
Graf, B. L., Rojas-Silva, P., Rojo, L. E., Delatorre-Herrera,J., Baldeón, M. E. & Raskin, I. (2015). Innovations inHealth Value and Functional Food Development of Quinoa(Chenopodium quinoa Willd.). Comprehensive Reviews inFood Science and Food Safety, 14(4), 431–445. https://doi.org/10.1111/1541-4337.12135
Grancieri, M., Martino, H. S. D. & González de Mejía, E. (2019a).Chia Seed (Salvia hispanica L.) as a Source of Proteinsand Bioactive Peptides with Health Benefits: A Review.Comprehensive Reviews in Food Science and Food Safety,18(2), 480–499. https://doi.org/10.1111/1541-4337.12423
Grancieri, M., Martino, H. S. D. & González de Mejía, E.(2019b). Digested total protein and protein fractions fromchia seed (Salvia hispanica L.) had high scavenging capacityand inhibited 5-LOX, COX-1-2, and iNOS enzymes.Food Chemistry, 289, 204–214. https://doi.org/10.1016/j.foodchem.2019.03.036
Guo, H., Hao, Y., Richel, A., Everaert, N., Chen, Y., Liu, M.,Yang, X. & Ren, G. (2020). Antihypertensive effect ofquinoa protein under simulated gastrointestinal digestionand peptide characterization. Journal of the Science ofFood and Agriculture, 100(15), 5569–5576. https://doi.org/10.1002/jsfa.10609
Hernández-Ledesma, B., del Mar Contreras, M. & Recio,I. (2011). Antihypertensive peptides: Production,bioavailability and incorporation into foods. Advances inColloid and Interface Science, 165(1), 23–35. https://doi.org/10.1016/J.CIS.2010.11.001
Inouye, K., Nakano, K., Asaoka, K. & Yasukawa, K. (2009).Effects of Thermal Treatment on the Coagulation of SoyProteins Induced by Subtilisin Carlsberg. Journal ofAgricultural and Food Chemistry, 57(2), 717–723. https://doi.org/10.1021/jf802693f
James, L. E. A. (2009). Quinoa (Chenopodium quinoa Willd.):Composition, Chemistry, Nutritional, and FunctionalProperties. Advances in Food and Nutrition Research, 58,1–31. https://doi.org/10.1016/S1043-4526(09)58001-1
Janssen, F., Pauly, A., Rombouts, I., Jansens, K. J. A., Deleu,L. J. & Delcour, J. A. (2017). Proteins of Amaranth(Amaranthus spp.), Buckwheat (Fagopyrum spp.),and Quinoa (Chenopodium spp.): A Food Science andTechnology Perspective. Comprehensive Reviews inFood Science and Food Safety, 16(1), 39–58. https://doi.org/10.1111/1541-4337.12240
Korhonen, H. & Pihlanto, A. (2003). Food-derived bioactivepeptides--opportunities for designing future foods. CurrentPharmaceutical Design, 9(16), 1297–1308. https://doi.org/10.2174/1381612033454892
Koyama, M., Hattori, S., Amano, Y., Watanabe, M. & Nakamura,K. (2014). Blood Pressure-Lowering Peptides fromNeo-Fermented Buckwheat Sprouts: A New Approachto Estimating ACE-Inhibitory Activity. PLoS ONE, 9(9),e105802. https://doi.org/10.1371/journal.pone.0105802
Koyama, M., Naramoto, K., Nakajima, T., Aoyama, T.,Watanabe, M. & Nakamura, K. (2013). Purification andIdentification of Antihypertensive Peptides from FermentedBuckwheat Sprouts. Journal of Agricultural and FoodChemistry, 61(12), 3013–3021. https://doi.org/10.1021/jf305157y
Kozioł, M. J. (1992). Chemical composition and nutritionalevaluation of quinoa (Chenopodium quinoa Willd.). Journalof Food Composition and Analysis, 5(1), 35–68. https://doi.org/10.1016/0889-1575(92)90006-6
Kristinsson, H. G. & Rasco, B. A. (2000). Fish ProteinHydrolysates: Production, Biochemical, and FunctionalProperties. Critical Reviews in Food Science and Nutrition,40(1), 43–81. https://doi.org/10.1080/10408690091189266
Li, C., Li, W., Zhang, Y. & Simpson, B. K. (2020). Comparisonof physicochemical properties of recombinant buckwheattrypsin inhibitor (rBTI) and soybean trypsin inhibitor(SBTI). Protein Expression and Purification, 171, 105614.https://doi.org/10.1016/j.pep.2020.105614
Li, J., Cui, X., Ma, X., Li, C. & Wang, Z. (2019). RecombinantBuckwheat Trypsin Inhibitor Improves the Protein andMitochondria Homeostasis in Caenorhabditis elegansModel of Aging and Age-Related Disease. Gerontology,65(5), 513–523. https://doi.org/10.1159/000500156
Li, J., Cui, X., Wang, Z. & Li, Y. (2015). rBTI extendsCaenorhabditis elegans lifespan by mimicking calorierestriction. Experimental Gerontology, 67, 62–71. https://doi.org/10.1016/j.exger.2015.05.001
Li, Matsui, T., Matsumoto, K., Yamasaki, R. & Kawasaki,T. (2002). Latent production of angiotensin I-convertingenzyme inhibitors from buckwheat protein. Journal ofPeptide Science, 8(6), 267–274. https://doi.org/10.1002/psc.387
Li, Y., Yang, N., Shi, F., Ye, F. & Huang, J. (2023). Isolation andidentification of angiotensin-converting enzyme inhibitorypeptides from Tartary buckwheat albumin. Journal of theScience of Food and Agriculture, 103(10), 5019–5027.https://doi.org/10.1002/jsfa.12573
López, D. N., Galante, M., Robson, M., Boeris, V. & Spelzini,D. (2018a). Amaranth, quinoa and chia protein isolates:Physicochemical and structural properties. InternationalJournal of Biological Macromolecules, 109, 152–159.https://doi.org/10.1016/j.ijbiomac.2017.12.080
López, D. N., Ingrassia, R., Busti, P., Bonino, J., Delgado, J. F.,Wagner, J., Boeris, V. & Spelzini, D. (2018b). Structuralcharacterization of protein isolates obtained from chia(Salvia hispanica L.) seeds. LWT, 90, 396–402. https://doi.org/10.1016/j.lwt.2017.12.060
Luo, X., Fei, Y., Xu, Q., Lei, T., Mo, X., Wang, Z., Zhang,L., Mou, X. & Li, H. (2020). Isolation and identificationof antioxidant peptides from tartary buckwheat albumin(Fagopyrum tataricum Gaertn) and their antioxidantactivities. Journal of Food Science, 85(3), 611–617. https://doi.org/10.1111/1750-3841.15004
Luthar, Z., Golob, A., Germ, M., Vombergar, B. & Kreft, I.(2021). Tartary Buckwheat in Human Nutrition. Plants,10(4), 700. https://doi.org/10.3390/plants10040700
Maestri, E., Marmiroli, M. & Marmiroli, N. (2016). Bioactivepeptides in plant-derived foodstuffs. Journal of Proteomics,147, 140–155. https://doi.org/10.1016/j.jprot.2016.03.048
Maldonado-Cervantes, E., Jeong, H. J., León-Galván, F.,Barrera-Pacheco, A., de León-Rodríguez, A., Gonzálezde Mejía, E., de Lumen, B. O. & Barba de la Rosa, A.P. (2010). Amaranth lunasin-like peptide internalizesinto the cell nucleus and inhibits chemical carcinogeninducedtransformation of NIH-3T3 cells. Peptides, 31(9),1635–1642. https://doi.org/10.1016/j.peptides.2010.06.014
Martínez Leo, E. E. & Segura Campos, M. R. (2020).Neuroprotective effect from Salvia hispanica peptidefractions on pro-inflammatory modulation of HMC3microglial cells. Journal of Food Biochemistry, 44(6), 1-8.https://doi.org/10.1111/jfbc.13207
Morales, D., Miguel, M. & Garcés-Rimón, M. (2021).Pseudocereals: a novel source of biologically activepeptides. Critical Reviews in Food Science and Nutrition,61(9), 1537–1544. https://doi.org/10.1080/10408398.2020.1761774
Mudgil, P., Kilari, B. P., Kamal, H., Olalere, O. A., FitzGerald,R. J., Gan, C.-Y. & Maqsood, S. (2020). Multifunctionalbioactive peptides derived from quinoa protein hydrolysates:Inhibition of α-glucosidase, dipeptidyl peptidase-IV andangiotensin I converting enzymes. Journal of Cereal Science,96, 103130. https://doi.org/10.1016/j.jcs.2020.103130
Mudgil, P., Omar, L. S., Kamal, H., Kilari, B. P. & Maqsood,S. (2019). Multi-functional bioactive properties of intactand enzymatically hydrolysed quinoa and amaranthproteins. LWT, 110, 207–213. https://doi.org/10.1016/j.lwt.2019.04.084
Nakamura, K., Naramoto, K. & Koyama, M. (2013). Bloodpressure-lowering effect of fermented buckwheatsprouts in spontaneously hypertensive rats. Journal ofFunctional Foods, 5(1), 406–415. https://doi.org/10.1016/J.JFF.2012.11.013
Nongonierma, A. B., le Maux, S., Dubrulle, C., Barre, C. &FitzGerald, R. J. (2015). Quinoa (Chenopodium quinoaWilld.) protein hydrolysates with in vitro dipeptidylpeptidase IV (DPP-IV) inhibitory and antioxidant properties.Journal of Cereal Science, 65, 112–118. https://doi.org/10.1016/j.jcs.2015.07.004
Obaroakpo, J. U., Liu, L., Zhang, S., Lu, J., Pang, X. & Lv,J. (2019). α-Glucosidase and ACE dual inhibitory proteinhydrolysates and peptide fractions of sprouted quinoayoghurt beverages inoculated with Lactobacillus casei.Food Chemistry, 299, 124985. https://doi.org/10.1016/j.foodchem.2019.124985
Olivera-Montenegro, L., Best, I. & Gil-Saldarriaga, A. (2021).Effect of pretreatment by supercritical fluids on antioxidantactivity of protein hydrolyzate from quinoa (Chenopodiumquinoa Willd.). Food Science & Nutrition, 9(1), 574–582.https://doi.org/10.1002/fsn3.2027
Orona-Tamayo, D., Valverde, M. E., Nieto-Rendón, B. &Paredes-López, O. (2015). Inhibitory activity of chia(Salvia hispanica L.) protein fractions against angiotensinI-converting enzyme and antioxidant capacity. LWT - FoodScience and Technology, 64(1), 236–242. https://doi.org/10.1016/j.lwt.2015.05.033
Orsini Delgado, M. C., Nardo, A., Pavlovic, M., Rogniaux,H., Añón, M. C. & Tironi, V. A. (2016). Identificationand characterization of antioxidant peptides obtainedby gastrointestinal digestion of amaranth proteins. FoodChemistry, 197Pt B, 1160–1167. https://doi.org/10.1016/j.foodchem.2015.11.092
Orsini Delgado, M. C., Tironi, V. A. & Añón, M. C. (2011).Antioxidant activity of amaranth protein or theirhydrolysates under simulated gastrointestinal digestion.LWT - Food Science and Technology, 44(8), 1752–1760.https://doi.org/10.1016/j.lwt.2011.04.002
Osborne, T. B., Van Slyke, D. D., Leavenworth, C. S. &Vinograd, M. (1915). Some Products of Hydrolysis ofGliadin, Lactalbumin, and the Protein of the Rice Kernel.Journal of Biological Chemistry, 22(2), 259–280. https://doi.org/10.1016/S0021-9258(18)87644-X
Oseguera-Toledo, M. E., González de Mejía, E., Reynoso-Camacho, R., Cardador-Martínez, A. & Amaya-Llano, S. L.(2014). Proteins and bioactive peptides. Nutrafoods, 13(4),147–157. https://doi.org/10.1007/s13749-014-0052-z
Panchaud, A., Affolter, M. & Kussmann, M. (2012). Massspectrometry for nutritional peptidomics: How to analyzefood bioactives and their health effects. Journal ofProteomics, 75(12), 3546–3559. https://doi.org/10.1016/j.jprot.2011.12.022
Perez Espitia, P. J., de Fátima Ferreira Soares, N., dos ReisCoimbra, J. S., de Andrade, N. J., Souza Cruz, R. & AlvesMedeiros, E. A. (2012). Bioactive Peptides: Synthesis,Properties, and Applications in the Packaging andPreservation of Food. Comprehensive Reviews in FoodScience and Food Safety, 11(2), 187–204. https://doi.org/10.1111/j.1541-4337.2011.00179.x
Petrova, P. & Petrov, K. (2020). Lactic Acid Fermentationof Cereals and Pseudocereals: Ancient NutritionalBiotechnologies with Modern Applications. Nutrients,12(4), 1118. https://doi.org/10.3390/nu12041118
Rabai, R., Rafiq Khan, M., Mahreen Mehwish, H., Riaz Rajoka,M. S., Lorenzo, J. M., Kieliszek, M., Rauf Khalid, A.,Asim Shabbir, M. & Aadi, R. M. (2021). An overviewof chia seed (Salvia hispanica L.) bioactive peptides’derivation and utilization as an emerging nutraceutical food.Frontiers in Bioscience-Landmark, 26(9), 643. https://doi.org/10.52586/4973
Reyes-Bautista, R., Flores-Sierra, J. de J., Hernández-Mendoza,G. & Xoca-Orozco, L. Á. (2023). Biologically ActivePeptides from Quinoa (Chenopodium quinoa Willd.) Grain.In Potential Health Benefits of Biologically Active PeptidesDerived from Underutilized Grains: Recent Advances intheir Isolation, Identification, Bioactivity and MolecularAnalysis (pp. 54–75). Bentham Science Publishers. https://doi.org/10.2174/9789815123340123040007
Rjeibi, I., Ncib, S., Ben Saad, A. & Souid, S. (2017). Evaluationof nutritional values, phenolic profile, aroma compoundsand biological properties of Pittosporum tobira seeds. Lipidsin Health and Disease, 16(1), 206. https://doi.org/10.1186/s12944-017-0596-1
Ruan, J.-J., Chen, H., Shao, J.-R., Wu, Q. & Han, X.-Y. (2011).An antifungal peptide from Fagopyrum tataricum seeds.Peptides, 32(6), 1151–1158. https://doi.org/10.1016/j.peptides.2011.03.015
Sandoval-Oliveros, M. R. & Paredes-López, O. (2013). Isolationand Characterization of Proteins from Chia Seeds (Salviahispanica L.). Journal of Agricultural and Food Chemistry,61(1), 193–201. https://doi.org/10.1021/jf3034978
Sarmadi, B. H. & Ismail, A. (2010). Antioxidative peptidesfrom food proteins: A review. Peptides, 31(10), 1949–1956.https://doi.org/10.1016/J.PEPTIDES.2010.06.020
Schoenlechner, R., Siebenhandl, S. & Berghofer, E. (2008).Pseudocereals. Gluten-Free Cereal Products andBeverages, 149–VI, 149-190. https://doi.org/10.1016/B978-012373739-7.50009-5
Scow, D. T., Smith, E. G. & Shaughnessy, A. F. (2003).Combination therapy with ACE inhibitors and angiotensinreceptorblockers in heart failure. American FamilyPhysician, 68(9), 1795–1798.
Segura-Campos, M. R., Chel-Guerrero, L. A., Castellanos-Ruelas, A. F. & Betancur-Ancona, D. A. (2016). ChemicalCharacterization of Mexican Chia (Salvia hispanica L.)Flour. In Functional Properties of Traditional Foods (pp.131–137). Springer US. https://doi.org/10.1007/978-1-4899-7662-8_10
Segura-Campos, M. R., Salazar-Vega, I. M., Chel-Guerrero, L.A. & Betancur-Ancona, D. A. (2013). Biological potentialof chia (Salvia hispanica L.) protein hydrolysates and theirincorporation into functional foods. LWT - Food Scienceand Technology, 50(2), 723–731. https://doi.org/10.1016/j.lwt.2012.07.017
Singh, B. P., Vij, S. & Hati, S. (2014). Functional significanceof bioactive peptides derived from soybean. Peptides, 54,171–179. https://doi.org/10.1016/j.peptides.2014.01.022
Singh, R. K., Chang, H.-W., Yan, D., Lee, K. M., Ucmak, D.,Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu,T. H., Bhutani, T. & Liao, W. (2017). Influence of diet onthe gut microbiome and implications for human health.Journal of Translational Medicine, 15(1), 73. https://doi.org/10.1186/s12967-017-1175-y
Soriano-Santos, J., Reyes-Bautista, R., Guerrero-Legarreta, I.,Ponce-Alquicira, E., Escalona-Buendía, H. B., Almanza-Pérez, J. C., Díaz-Godínez, G. & Román-Ramos, R.(2015). Dipeptidyl peptidase IV inhibitory activity ofprotein hydrolyzates from Amaranthus hypochondriacusL. Grain and their influence on postprandial glycemia inStreptozotocin-induced diabetic mice. African Journal ofTraditional, Complementary and Alternative Medicines,12(1), 90. https://doi.org/10.4314/ajtcam.v12i1.13
Tao, T., Pan, D., Zheng, Y. Y. & Ma, T. jun. (2019). Optimizationof Hydrolyzed Crude Extract from Tartary BuckwheatProtein and Analysis of Its Hypoglycemic Activity invitro. IOP Conference Series: Earth and EnvironmentalScience, 295(3), 032065. https://doi.org/10.1088/1755-1315/295/3/032065
Tiengo, A., Faria, M. & Netto, F. M. (2009). Characterizationand ACE-Inhibitory Activity of Amaranth Proteins.Journal of Food Science, 74(5), H121–H126. https://doi.org/10.1111/j.1750-3841.2009.01145.x
Tironi, V. A. & Añón, M. C. (2010). Amaranth proteins asa source of antioxidant peptides: Effect of proteolysis.Food Research International, 43(1), 315–322. https://doi.org/10.1016/j.foodres.2009.10.001
Tovar-Pérez, E. G., Guerrero-Legarreta, I., Farrés-González,A. & Soriano-Santos, J. (2009). Angiotensin I-convertingenzyme-inhibitory peptide fractions from albumin1 and globulin as obtained of amaranth grain. FoodChemistry, 116(2), 437–444. https://doi.org/10.1016/j.foodchem.2009.02.062
Tovar-Pérez, E. G., Lugo-Radillo, A. & Aguilera-Aguirre,S. (2019). Amaranth grain as a potential source ofbiologically active peptides: a review of their identification,production, bioactivity, and characterization. Food ReviewsInternational, 35(3), 221–245. https://doi.org/10.1080/87559129.2018.1514625
Udenigwe, C. C. & Aluko, R. E. (2012). Food Protein-DerivedBioactive Peptides: Production, Processing, and PotentialHealth Benefits. Journal of Food Science, 77(1), R11–R24.https://doi.org/10.1111/j.1750-3841.2011.02455.x
Urbizo-Reyes, U., San Martin-González, M. F., García-Bravo, J., López Malo Vigil, A. & Liceaga, A. M.(2019). Physicochemical characteristics of chia seed(Salvia hispanica) protein hydrolysates produced usingultrasonication followed by microwave-assisted hydrolysis.Food Hydrocolloids, 97, 105187. https://doi.org/10.1016/j.foodhyd.2019.105187
Usman, M., Patil, P. J., Mehmood, A., Rehman, A., Shah, H.,Haider, J., Xu, K., Zhang, C. & Li, X. (2022). Comparativeevaluation of pseudocereal peptides: A review of theirnutritional contribution. Trends in Food Science &Technology, 122, 287–313. https://doi.org/10.1016/j.tifs.2022.02.009
Valencia-Chamorro, S. A. (2003). QUINOA. In Encyclopediaof Food Sciences and Nutrition (pp. 4895–4902). Elsevier.https://doi.org/10.1016/B0-12-227055-X/00995-0
Van Lancker, F., Adams, A. & De Kimpe, N. (2011). ChemicalModifications of Peptides and Their Impact on FoodProperties. Chemical Reviews, 111(12), 7876–7903. https://doi.org/10.1021/cr200032j
Velarde-Salcedo, A. J., Barrera-Pacheco, A., Lara-González, S.,Montero-Morán, G. M., Díaz-Gois, A., González de Mejía,E. & Barba de la Rosa, A. P. (2013). In vitro inhibitionof dipeptidyl peptidase IV by peptides derived from thehydrolysis of amaranth (Amaranthus hypochondriacusL.) proteins. Food Chemistry, 136(2), 758–764. https://doi.org/10.1016/j.foodchem.2012.08.032
Vilcacundo, R., Martínez-Villaluenga, C. & Hernández-Ledesma, B. (2017). Release of dipeptidyl peptidaseIV, α-amylase and α-glucosidase inhibitory peptidesfrom quinoa (Chenopodium quinoa Willd.) during invitro simulated gastrointestinal digestion. Journal ofFunctional Foods, 35, 531–539. https://doi.org/10.1016/j.jff.2017.06.024
Vilcacundo, R., Miralles, B., Carrillo, W. & Hernández-Ledesma,B. (2018). In vitro chemopreventive properties of peptidesreleased from quinoa (Chenopodium quinoa Willd.) proteinunder simulated gastrointestinal digestion. Food ResearchInternational, 105, 403–411. https://doi.org/10.1016/j.foodres.2017.11.036
Wali, A., Mijiti, Y., Yanhua, G., Yili, A., Aisa, H. A. & Kawuli, A.(2021). Isolation and Identification of a Novel AntioxidantPeptide from Chickpea (Cicer arietinum L.) Sprout ProteinHydrolysates. International Journal of Peptide Researchand Therapeutics, 27(1), 219–227. https://doi.org/10.1007/s10989-020-10070-2
Wang, C., Yuan, S., Zhang, W., Ng, T. & Ye, X. (2019).Buckwheat Antifungal Protein with Biocontrol Potential ToInhibit Fungal (Botrytis cinerea) Infection of Cherry Tomato.Journal of Agricultural and Food Chemistry, 67(24),6748–6756. https://doi.org/10.1021/acs.jafc.9b01144
Wang, F., Yu, G., Zhang, Y., Zhang, B. & Fan, J. (2015).Dipeptidyl Peptidase IV Inhibitory Peptides Derived fromOat (Avena sativa L.), Buckwheat (Fagopyrum esculentum),and Highland Barley (Hordeum vulgare trifurcatum(L.) Trofim) Proteins. Journal of Agricultural and FoodChemistry, 63(43), 9543–9549. https://doi.org/10.1021/acs.jafc.5b04016
Wang, W. & de Mejía, E. G. (2005). A New Frontier inSoy Bioactive Peptides that May Prevent Age-relatedChronic Diseases. Comprehensive Reviews in FoodScience and Food Safety, 4(4), 63–78. https://doi.org/10.1111/j.1541-4337.2005.tb00075.x
Watanabe, K., Ibuki, A., Chen, Y.-C., Kawamura, Y. &Mitsunaga, T. (2003). Composition of Quinoa ProteinFractions. Nippon Shokuhin Kagaku Kogaku Kaishi, 50(11),546–549. https://doi.org/10.3136/nskkk.50.546
Weidinger, A. & Kozlov, A. (2015). Biological Activities ofReactive Oxygen and Nitrogen Species: Oxidative Stressversus Signal Transduction. Biomolecules, 5(2), 472–484.https://doi.org/10.3390/biom5020472
Zaika, Ye., Kozub, N., Sozinov, I., Bidnyk, G. & Karazhbey,P. (2019). Polymorphism of buckwheat seed storageproteins in cultivar groups, differing by their morphotype.Agricultural Science and Practice, 6(1), 10–17. https://doi.org/10.15407/agrisp6.01.010
Zevallos, V. F., Herencia, I. L., Chang, F., Donnelly, S., Ellis,J. H. & Ciclitira, P. J. (2014). Gastrointestinal Effects ofEating Quinoa (Chenopodium quinoa Willd.) in CeliacPatients. American Journal of Gastroenterology, 109(2),270–278. https://doi.org/10.1038/ajg.2013.431
Zhang, H.-W., Zhang, Y.-H., Lu, M.-J., Tong, W.-J. & Cao, G.-W.(2007). Comparison of Hypertension, Dyslipidaemia andHyperglycaemia Between Buckwheat Seed-Consumingand Non-Consuming Mongolian-Chinese PopulationsIn Inner Mongolia, China. Clinical and ExperimentalPharmacology and Physiology, 34(9), 838–844. https://doi.org/10.1111/j.1440-1681.2007.04614.x
Zhang, T., Dou, W., Zhang, X., Zhao, Y., Zhang, Y., Jiang, L.& Sui, X. (2021). The development history and recentupdates on soy protein-based meat alternatives. Trends inFood Science & Technology, 109, 702–710. https://doi.org/10.1016/J.TIFS.2021.01.060
Zheng, Y., Wang, X., Zhuang, Y., Li, Y., Tian, H., Shi, P. &Li, G. (2019). Isolation of Novel ACE-Inhibitory andAntioxidant Peptides from Quinoa Bran Albumin Assistedwith an in silico Approach: Characterization, In VivoAntihypertension, and Molecular Docking. Molecules,24(24), 4562. https://doi.org/10.3390/molecules24244562
Zhou, X., Wen, L., Li, Z., Zhou, Y., Chen, Y. & Lu, Y. (2015).Advance on the benefits of bioactive peptides frombuckwheat. Phytochemistry Reviews, 14(3), 381–388.https://doi.org/10.1007/s11101-014-9390-0
Zhou, Y., Jiang, Y., Shi, R., Chen, Z., Li, Z., Wei, Y. & Zhou,X. (2020). Structural and antioxidant analysis of Tartarybuckwheat (Fagopyrum tartaricum Gaertn.) 13S globulin.Journal of the Science of Food and Agriculture, 100(3),1220–1229. https://doi.org/10.1002/jsfa.10133
Zhu, F. (2016). Chemical composition and health effects ofTartary buckwheat. Food Chemistry, 203, 231–245. https://doi.org/10.1016/J.FOODCHEM.2016.02.050
Zhu, F. (2021). Buckwheat proteins and peptides: Biologicalfunctions and food applications. Trends in Food Science& Technology, 110, 155–167. https://doi.org/10.1016/J.TIFS.2021.01.081