2023, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2023; 26 (1)
Actividad biológica de las proteínas de leguminosas del género Vigna: Una breve revisión
Mancera-Castro P, González-Cruz L, Bernardino-Nicanor A
Idioma: Español
Referencias bibliográficas: 67
Paginas: 1-13
Archivo PDF: 370.53 Kb.
RESUMEN
Las especies del género
Vigna, que pertenecen al grupo de las leguminosas, presentan un alto contenido de proteínas, entre las
que destacan, por su importancia, las albúminas y las globulinas, cuya función principal es la de reserva, pero también algunas de
ellas se ocupan de la defensa contra los hongos, los insectos y los microorganismos, como es en el caso de las lectinas, inhibidores
de las proteasas, las α-amilasas, las defensinas, las proteínas de transferencia de lípidos (nsLTPs), tioninas y ciclótidos, entre
otras. Actualmente, todas estas proteínas, así como los péptidos que se obtienen de su hidrólisis, se consideran relevantes debido
a la actividad biológica que han demostrado al tener un efecto: anticancerígeno, antihipertensivo, antidiabético, antioxidante,
antimicrobiano, antifúngico, antiviral e insecticida. Es por ello, que también las especies de
Vigna son recursos valiosos para el
desarrollo de alimentos funcionales, productos farmacéuticos y agrícolas.
REFERENCIAS (EN ESTE ARTÍCULO)
Abd-allah, H. H., Mahdy, A. M. M., Gad, M. F., Hassan, E.O., Embaby, S. M. & Yaseen, A. (2018). Legume seeddeterioration caused by some mould fungi affecting seedquality. Middle East Journal of Applied Sciences, 8(2),325-336.
Abdel-Shafi, S., Al-Mohammadi, A. R., Osman, A., Enan, G.,Abdel-Hameid, S. & Sitohy, M. (2019). Characterizationand antibacterial activity of 7S and 11S globulins isolatedfrom cowpea seed protein. Molecules, 24(6), 1-15. DOI:10.3390/molecules24061082
Aluko, R. E. (2015). Antihypertensive peptides from foodproteins. Annual Review of Food Science and Technology,6, 235-262. DOI: 10.1146/annurev-food-022814-015520
Ammerman, N. C., Beier-Sexton, M. & Azad, A. F. (2008).Growth and maintenance of Vero cell lines. CurrentProtocols in Microbiology, 11(1), A.44.1-A.4E.7. DOI:10.1002/9780471729259.mca04es11
Apak, R., Özyürek, M., Güçlü, K. & Çapanoʇlu, E.(2016). Antioxidant activity/capacity measurement. 1.Classification, physicochemical principles, mechanisms,and electron transfer (ET)-based assays. Journal ofAgricultural and Food Chemistry, 64(5), 997-1027. DOI:10.1021/acs.jafc.5b04739
Arise, R. O., Acho, M. A., Yekeen, A. A., Omokanye, I. A.,Sunday-Nwaso, E. O, Akiode, O. S. & Malomo, S. O.(2019). Kinetics of angiotensin-1 converting enzymeinhibition and antioxidative properties of Azadirachtaindica seed protein hydrolysates. Heliyon, 5(5), e01747.DOI: 10.1016/j.heliyon.2019.e01747
Badarinath, A. V., Rao, K. M., Chetty, C. M. S., Ramkanth, S.,Rajan, T. V. S. & Gnanaprakash, K. (2010). A review onIn-vitro antioxidant methods: comparisions, correlationsand considerations. International Journal of PharmTechResearch, 2(2), 1276-1285.
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. & Kalayci,O. (2012). Oxidative stress and antioxidant defense. WorldAllergy Organization Journal, 5, 9-19. DOI: 10.1097/WOX.0b013e3182439613
Boukar, O., Bhattacharjee, R., Fatokun, C., Kumar, P. L. &Gueye, B. (2013). Cowpea. En M. Singh, I. S. Bisht &H. Upadhyaya (Eds.), Genetic and Genomic Resourcesof Grain Legume Improvement (pp. 137-156). New York:Elsevier Inc., USA.
Carlini, C. R. & Grossi-de-Sá, M. F. (2002). Plant toxic proteinswith insecticidal properties. A review on their potentialitiesas bioinsecticides. Toxicon, 40(11), 1515-1539. DOI:10.1016/S0041-0101(02)00240-4
Castañeda-Pérez, E., Jiménez-Morales, K., Quintal-Novelo, C.,Moo-Puc, R., Chel-Guerrero, L. & Betancur-Ancona, D.(2019). Enzymatic protein hydrolysates and ultrafilteredpeptide fractions from Cowpea Vigna unguiculata L beanwith in vitro antidiabetic potential. Journal of the IranianChemical Society, 16(8), 1773-1781. DOI: 10.1007/s13738-019-01651-0
Chen, Z., Wang, J., Liu, W. & Chen, H. (2016). Physicochemicalcharacterization, antioxidant and anticancer activitiesof proteins from four legume species. Journal of FoodScience and Technology, 54(4), 964-972. DOI: 10.1007/s13197-016-2390-x
Cheung, A., Wong, J. & Ng, T. (2009). Trypsin-Chymotrypsininhibitorsfrom Vigna mungo seeds. Protein& PeptideLetters,16(3), 277-284. DOI: 10.2174/092986609787601714
Consolim-Colombo, F. M. & Bortolotto, L. A. (2018).Endothelium and arterial hypertension. En P. L. Da Luz,P. Libby, A. C. P. Chagas & F. R. M. Laurindo (Eds.),Endothelium and Cardiovascular Diseases: VascularBiology and Clinical Syndromes (pp. 429-437). ElsevierInc.
Cú-Cañetas, T., Ancona, D. B., Tintoré, S. G., Peraza, M. S.& Guerrero, L. C. (2015). Estudios de inhibición in vitrode la enzima convertidora de angiotensina-I, efectoshipotensor y antihipertensivo de fracciones peptídicas deV. unguiculata. Nutrición Hospitalaria, 32(5), 2117-2125.DOI: 10.3305/nh.2015.32.5.9624
dos Santos, I. S., Carvalho, A. O., de Souza-Filho, G. A., dosNascimento, V. V., Machado, O. L. T. & Gomes, V. M.(2010). Purification of a defensin isolated from Vignaunguiculata seeds, its functional expression in Escherichiacoli, and assessment of its insect α-amylase inhibitoryactivity. Protein Expression and Purification, 71(1), 8-15.DOI: 10.1016/j.pep.2009.11.008
Durak, A., Baraniak, B., Jakubczyk, A. & Swieca, M. (2013).Biologically active peptides obtained by enzymatichydrolysis of Adzyki bean seeds. Food Chemistry, 141,2177-2183. DOI: 10.1016/j.foodchem.2013.05.012
El Safadi, Y., Vivet-Boudou, V. & Marquet, R. (2007). HIV-1reverse transcriptase inhibitors. Applied Microbiologyand Biotechnology, 75, 723-737. DOI: 10.1007/s00253-007-0919-7
Franco, O. L., Murad, A. M., Leite, J. R., Mendes, P. A. M.,Prates, M. V. & Bloch, C. (2006). Identification of a cowpeaγ-thionin with bactericidal activity. FEBS Journal, 273(15),3489-3497. DOI: 10.1111/j.1742-4658.2006.05349.x
Friso, S., Carvajar, C. A., Pizzolo, F., Fardella, C. E. &Olivieri, O. (2017). Epigenetics and Arterial Hypertension:Evidences and Perspectives. En J. Laurence & M. VanBeusekom (Eds.), Translating Epigenetics to the Clinic(pp. 159-184). Elsevier Inc.
GLOBOCAN, Global Cancer Observatory (2020). Estimatednumber of new cases in 2020, worldwide, both sexes, allages in Cancer today. Recuperado de https://www.uicc.org/news/globocan-2020-new-global-cancer-data
González-Montoya, M., Cano-Sampedro, E. & Mora-Escobedo,R. (2017). Bioactive peptides from legumes as anticancertherapeutic agents. International Journal of Cancer andClinical Research, 4(081), 1-10. DOI: 10.23937/2378-3419/1410081
Gopar-Nieto, R., Ezquerra-Osorio, A., Chávez-Gómez, N. L.,Manzur-Sandoval, D. & Raymundo-Martínez, G. I. (2021).¿Cómo tratar la hipertensión arterial sistémica? Estrategiasde tratamiento actuales. Archivos de Cardiología de México,91(4), 493-499. DOI: 10.24875/acm.200003011
Gulcin, I. (2020). Antioxidants and antioxidant methods: anupdated overview. Archives of Toxicology, 94, 651-715.DOI: 10.1007/s00204-020-02689-3
Gupta, N., Srivastava, N. & Bhagyawant, S. S. (2018). Vicilin-Amajor storage protein of mungbean exhibits antioxidativepotential, antiproliferative effects and ACE inhibitoryactivity. PLoS ONE, 13(2), 1-17. DOI: 10.1371/journal.pone.0191265
Harouna, D. V., Venkataramana, P. B., Ndakidemi, P. A. &Matemu, A. O. (2018). Under-exploited wild Vigna speciespotentials in human and animal nutrition: A review. GlobalFood Security, 18, 1-11. DOI: 10.1016/j.gfs.2018.06.002
Herniter, I. A., Lo, R., Muñoz-Amatriaín, M., Lo, S., Guo,Y.-N., Huynh, B.-L., Lucas, M., Jia, Z., Roberts, P. A.,Lonardi, S. & Close, T. J. (2019). Seed coat pattern QTLand development in Cowpea (Vigna unguiculata [L.]Walp.). Frontiers in Plant Science, 10, 1-12. DOI: 10.3389/fpls.2019.01346
Jiang, B., Obiro, W. C., Li, Y., Zhang, T. & Mu, W. (2010).Bioactivity of Proteins and Peptides from Peas (Pisumsativum, Vigna unguiculata and Cicer arietinum L.). EnY. Mine, E. Li-Chan & B. Jiang (Eds.), Bioactive Proteinsand Peptides as Functional Foods and Nutraceuticals (pp.273-287). John Wiley & Sons Ltd.
Joshi, V. D., Dahake, A. P. & Suthar, A. P. (2010). Adverseeffects associated with the use of antihypertensive drugs: Anoverview. International Journal of PharmTech Research,2(1), 10-13.
Katoch, R., Sharma, K., Singh, S. K. & Thakur, N. (2015).Evaluation and characterization of trypsin inhibitor fromrice bean with inhibitory activity against gut proteasesof Spodoptera litura. Zeitschrift Fur Naturforschung –Section C Journal of Biosciences, 70(11-12), 287-295.DOI: 10.1515/znc-2015-5029
Kaur, H., Gill, R. S. & Kaur, S. (2020). Rice bean (Vignaumbellata Thunb. Ohwi and Ohashi) protection againstCallosobruchus maculatus F. by the presence of proteinprofile. Journal of Stored Products Research, 86, 101574.DOI: 10.1016/j.jspr.2020.101574
Kim, J. Y., Park, S. C., Hwang, I., Cheong, H., Nah, J. W.,Hahm, K. S. & Park, Y. (2009). Protease inhibitors fromplants with antimicrobial activity. International Journalof Molecular Sciences, 10(6), 2860-2872. DOI: 10.3390/ijms10062860
Kusumah, J., Real Hernández, L. M. & González de Mejía, E.(2020). Antioxidant potential of mung bean (Vigna radiata)albumin peptides produced by enzymatic hydrolysisanalyzed by biochemical and in silico methods. Foods,9(9), 1241. DOI: 10.3390/foods9091241
Mancera-Castro, P., González-Cruz, L., Valadez-Vega, C.,Hernández-López, D., Ramírez-Medina, H., Juárez-Goiz,M. & Bernardino-Nicanor, A. (2021). Purificación ycaracterización biológica parcial de una Lectina de FrijolVaquita. Investigación y Desarrollo en Ciencia y Tecnologíade Alimentos, 6, 29-34. http://www.fcb.uanl.mx/IDCyTA/files/volume6/6/1/5.pdf
Maphosa, Y. & Jideani, V. A. (2017). The role of legumes inHuman Nutrition. En M. Hueda-Chávarri (Ed.), FunctionalFood. Improve Health through Adequate Food (pp. 103-121). London: IntechOpen, England.
Moharib, S. A. (2018). Anticancer activity of L-asparaginaseproduced from Vigna unguiculata. World Scientific Research,5(1), 1-12. DOI: 10.20448/journal.510.2018.51.1.1236. Mune Mune, M. A., Minka, S. R. & Henle, T. (2018).Investigation on antioxidant, angiotensin convertingenzyme and dipeptidyl peptidase IV inhibitory activity ofBambara bean protein hydrolysates. Food Chemistry, 250,162-169. DOI: 10.1016/j.foodchem.2018.01.001
Munteanu, I. G. & Apetrei, C. (2021). Analytical methods usedin determining antioxidant activity: A review. InternationalJournal of Molecular Sciences, 22, 3380. DOI: 10.3390/ijms22073380
Muzquiz, M., Varela, A., Burbano, C., Cuadrado, C., Guillamón,E. & Pedrosa, M. M. (2012). Bioactive compounds inlegumes: Pronutritive and antinutritive actions. Implicationsfor nutrition and health. Phytochemistry Reviews, 11(2-3),227-244. DOI: 10.1007/s11101-012-9233-9
Ng, T. B. (2004). Antifungal proteins and peptides of leguminousand non-leguminous origins. Peptides, 25(7), 1215-1222.DOI: 10.1016/j.peptides.2004.03.012
Ng, T. B., Wong, J. H. & Fang, E. F. (2011). Defensins andother biocidal proteins from bean seeds with medicinalactivities. Current Medicinal Chemistry, 18, 5644-5654.DOI: 10.2174/092986711798347306
Pandiyan, M., Senthil, N., Anitha, M., Raveendran, M.,Sudha, M., Latha, M., Nagarajan, P., Toomoka, N. &Balasubramaninan, P. (2012). Diversity analysis of Vignasp. through morphological markers. Wudpecker Journalof Agricultural Research, 1, 335-340.
Pina-Pérez, M. C. & Ferrús Pérez, M. A. (2018). Antimicrobialpotential of legume extracts against foodborne pathogens:A review. Trends in Food Science and Technology, 72,114-124. DOI: 10.1016/j.tifs.2017.12.007
Rodríguez-Roque, M. J., Soliva-Fortuny, R. & Martín-Belloso, O. (2017). Methods for determining theantioxidant capacity of food constituents. En E. M. Yahia(Ed.), Fruit and Vegetable Phytochemicals: Chemistryand Human Health (2nd edition, pp. 803-816). JohnWiley & Sons, Inc.
Sánchez-Chino, X., Jiménez-Martínez, C., Dávila-Ortiz, G.,Álvarez-González, I. & Madrigal-Bujaidar, E. (2015).Nutrient and nonnutrient components of legumes, and itschemopreventive activity. A review. Nutrition and Cancer,67(3), 401-410. DOI: 10.1080/01635581.2015.100472944. Schmidt, M., Arendt, E. K. & Thery, T. L. C. (2019). Isolationand characterization of the antifungal activity of the cowpeadefensin Cp-thionin II. Food Microbiology, 82, 504-514.DOI: 10.1016/j.fm.2019.03.021
Sonklin, C., Alashi, M. A., Laohakunjit, N., Kerdchoechuen,O. & Aluko, L.E. (2020). Identification of antihypertensivepeptides from mung bean protein hydrolysate and theireffects in spontaneously hypertensive rats. Journalof Functional Foods, 64, 103635. DOI: 10.1016/j.jff.2019.103635
Sparvoli, F., Bollini, R. & Cominelli, E. (2015). NutritionalValue. En A. M. De Ron (Ed.), Grain Legumes (pp. 291-325). New York: Springer, USA.
Staško, A., Brezová, V., Biskupiˇc, S. & Mišík, V.(2007). The potential pitfalls of using 1,1-diphenyl-2-picrylhydrazyl to characterize antioxidants in mixedwater solvents. Free Radical Research, 41, 379-390. DOI:10.1080/10715760600930014
Tang, S. S., Prodhan, Z. H., Biswas, S. K., Le, C. F. &Sekaran, S. D. (2018). Antimicrobial peptides fromdifferent plant sources: Isolation, characterization, andpurification. Phytochemistry, 154, 94-105. DOI: 10.1016/j.phytochem.2018.07.002
Thumbrain, D., Dwarka, D., Gerrano, A. S. & Mellem, J. J.(2020). Antioxidant and apoptotic potential of proteinisolates derived from Vigna unguiculata (L.) Walp.International Journal of Food Science and Technology,55(7), 2813-2823. DOI: 10.1111/ijfs.14535
Tian, G. T., Zhu, M. J., Wu, Y. Y., Liu, Q., Wang, H. X. & Ng,T. B. (2013). Purification and characterization of a proteinwith antifungal, antiproliferative, and HIV-1 reversetranscriptase inhibitory activities from small brown-eyedcowpea seeds. Biotechnology and Applied Biochemistry,64(4), 393-398. DOI: 10.1002/bab.1102
Tomasetti, C., Li, L. & Vogelstein, B. (2017). Stem celldivisions, somatic mutations, cancer etiology, and cancerprevention. Science, 355(6331), 1330-1334. DOI: 10.1126/science.aaf9011
Tomooka, N. (2009). The origins of rice bean (Vigna umbellata)and azuki bean (Vigna angularis): The evolution of twolesser-known Asian beans. En T. Akimichi (Ed.), Anillustrated eco-history of the Mekong River Basin (pp.33-35). White Lotus Co. Ltd.
Tomooka, N., Kaga, A., Isemura, T., Vaughan, D., Srinives, P.,Somta, P., Thadavong, S., Bounphanousay, C., Kanyavong,K., Inthapanya, P., Pandiyan, M., Senthil, N., Ramamoorthi,N., Jaiwal, P. K., Jing, T., Umezawa, K. & Yokoyama,T. (2011). Vigna Genetic Resources. En N. Tomooka &D. Vaughan, The 14th NIAS International Workshop onGenetic Resources – Genetic Resources and ComparativeGenomics of Legumes (Glycine and Vigna) (pp. 11-21).Tsukuba: National Institute of Agrobiological Science.
Unger, T., Borghi, C., Charchar, F., Khan, N. A., Poulter,N. R., Prabhakaran, D., Ramirez, A., Schlaich, M.,Stergiou, G. S., Tomaszewski, M., Wainford, R. D.,Williams, B. & Schutte, A. E. (2020). 2020 InternationalSociety of Hypertension Global Hypertension PracticeGuidelines. Hypertension, 75, 1334-1357. DOI: 10.1161/HYPERTENSIONAHA.120.15026
Wang, F., Huang, L., Yuan, X., Zhang, X., Guo, L., Xue,C. & Chen, X. (2021). Nutritional, phytochemical andantioxidant properties of 24 mung bean (Vigna radiate L.)genotypes. Food Production, Processing and Nutrition,3(28), 1-12. DOI: 10.1186/s43014-021-00073-x
Wang, S., Lin, J., Ye, M., Ng, T. B., Rao, P. & Ye, X. (2006).Isolation and characterization of a novel mung beanprotease inhibitor with antipathogenic and anti-proliferativeactivities. Peptides, 27(12), 3129-3136. DOI: 10.1016/j.peptides.2006.07.013
Wang, S. Y., Wu, J. H., Ng, T. B., Ye, X. Y. & Rao, P. F. (2004).A non-specific lipid transfer protein with antifungal andantibacterial activities from the mung bean. Peptides, 25(8),1235-1242. DOI: 10.1016/j.bbrc.2004.12.077
Wong, J. H. & Ng, T. B. (2003). Purification of a trypsin-stablelectin with antiproliferative and HIV-1 reverse transcriptaseinhibitory activity. Biochemical and Biophysical ResearchCommunications, 301(2), 545-550. DOI: 10.1016/S0006-291X(02)03080-2
Wong, J. H., Ng, T. B., Wang, H., Cheung, R. C. F., Ng,C. C. W., Ye, X., Yang, J., Liu, F., Ling, C., Chan, K.,Ye, X. & Chan, W. Y. (2019). Antifungal proteins withantiproliferative activity on cancer cells and HIV-1 enzymeinhibitory activity from medicinal plants and medicinalfungi. Current Protein & Peptide Science, 20(3), 265-276.DOI: 10.2174/1389203719666180613085704
Xu, L., Li, Y., Dai, Y. & Peng, J. (2018). Natural products forthe treatment of type 2 diabetes mellitus: Pharmacologyand mechanisms. Pharmacological Research, 130, 451-465. DOI: 10.1016/j.phrs.2018.01.015
Ye, X. & Ng, T. B. (2005). A chitinase with antifungal activityfrom the mung bean. Protein Expression and Purification,40(2), 230-236. DOI: 10.1016/j.pep.2004.06.032
Ye, X. Y. & Ng, T. B. (2001). Isolation of unguilin, acyclophilin-like protein with antimitogenic, antiviral,and antifungal activities, from black-eyed pea.Journal of Protein Chemistry, 20(5), 353-359. DOI:10.1023/A:1012272518778
Ye, X. Y. & Ng, T. B. (2002a). Delandin, a chitinase-like proteinwith antifungal, HIV-1 reverse transcriptase inhibitoryand mitogenic activities from the rice bean Delandiaumbellata. Protein Expression and Purification, 24(3),524-529. DOI: 10.1006/prep.2001.1596
Ye, X. Y. & Ng, T. B. (2002b). Purification of angularina, anovel antifungal peptide from Adzuki beans. Journal ofPeptide Science, 8(3), 101-106. DOI: 10.1002/psc.372
Ye, X. Y., Wang, H. X. & Ng, T. B. (2000). Structurally dissimilarproteins with antiviral and antifungal potency from cowpea(Vigna unguiculata) seeds. Life Sciences, 67(26), 3199-3207. DOI: 10.1016/s0024-3205(00)00905-x
Zahedmehr, A. (2018). Hypertension. En M. Maleki, A.Alizadehasl & M. Haghjoo (Eds.), Practical Cardiology(pp. 291-302). Elsevier Inc.
Zitvogel, L., Pietrocola, F. & Kroemer, G. (2017). Nutrition,inflammation and cancer. Nature Immunology, 18(8), 843-850. DOI: 10.1038/ni.3754