2022, Number 2
<< Back Next >>
Rev Cubana Pediatr 2022; 94 (2)
Interactions between genes and the environment in childhood obesity
Ormeño-Julca AJ
Language: Spanish
References: 109
Page: 1-24
PDF size: 689.66 Kb.
ABSTRACT
Introduction:
Childhood obesity represents one of the most important public health problems today and affects both developed and developing countries. The negative impact on the health of children makes it necessary to clearly know the mechanisms that predispose to this condition, in order to establish the best therapeutic strategies in the comprehensive care of patients.
Objective:
Obtain recently published information about the interaction between genes and the environment in childhood obesity.
Methods:
A bibliographic search was carried out in Medline database through Pubmed on the literature published on the subject between January 2016 and September 2021, selecting the most relevant articles.
Analysis and integration of information:
Initially, obesity was associated with unhealthy lifestyles such as exaggerated caloric intake and sedentary lifestyle and, later, through genome-wide association studies it was possible to discover the existence of multiple polymorphisms associated with the increase in body mass index, adiposity and metabolic syndrome, without these being able to fully explain the expression of obesity in the population.
Conclusions:
There is sufficient evidence to conclude that there is an interaction between genes and the environment for the development of obesity, which would be influenced by an individual susceptibility; however, more studies are needed to fully understand the mechanisms involved.
REFERENCES
Skinner AC, Ravanbakht SN, Skelton JA, Perrin EM, Armstrong SC. Prevalence of Obesity and Severe Obesity in US Children, 1999-2016. Pediatrics. 2018;141(3):e20173459. DOI: 10.1542/peds.2017-3459.
Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al2. . Trends in Obesity Prevalence Among Children and Adolescents in the United States, 1988-1994 Through 2013-2014. JAMA. 2016;315(21):2292-9. DOI: 10.1001/jama.2016.6361
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627-2642. DOI: 10.1016/S0140-6736(17)32129-3
Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A; GBD 2015 Obesity Collaborators, et al4. . Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017;377(1):13-27. DOI: 10.1056/NEJMoa1614362
Klish WJ, Skelton J. Definition, epidemiology, and etiology of obesity in children and adolescents. EE: UU, Texas: Baylor College of Medicine; 2021 [acceso 30/07/2020]. Disponible en: Disponible en: https://www.uptodate.com/contents/definition-epidemiology-and-etiology-of-obesity-in-children-and-adolescents 5.
Wood AC. Gene-Environment Interplay in Child Eating Behaviors: What the Role of "Nature" Means for the Effects of "Nurture". Curr Nutr Rep. 2018;7(4):294-302. DOI: 10.1007/s13668-018-0254-x
Suarez-Carmona W, Sanchez-Oliver J, Gonzales-Jurado J. Fisiopatología de la obesidad: Perspectiva actual. Rev Chil Nutr. 2017 [acceso 30/07/2020];44(3):226-33. Disponible en: Disponible en: https://scielo.conicyt.cl/pdf/rchnut/v44n3/0716-1549-rchnut-44-03-0226.pdf 7.
Ouni M, Schürmann A. Epigenetic contribution to obesity. Mamm Genome. 2020;31(5-6):134-145. DOI: 10.1007/s00335-020-09835-3
Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2021 Sep 23:1-14. DOI: 10.1038/s41576-021-00414-z
Dalle Molle R, Fatemi H, Dagher A, Levitan RD, Silveira PP, Dubé L. Gene and environment interaction: Is the differential susceptibility hypothesis relevant for obesity? Neurosci Biobehav Rev. 2017;73:326-39. DOI: 10.1016/j.neubiorev.2016.12.028
Kansra AR, Lakkunarajah S, Jay MS. Childhood and Adolescent Obesity: A Review. Front Pediatr. 2021;8:581461. DOI: 10.3389/fped.2020.581461
Reddon H, Patel Y, Turcotte M, Pigeyre M, Meyre D. Revisiting the evolutionary origins of obesity: lazy versus peppy-thrifty genotype hypothesis. Obes Rev. 2018;19(11):1525-1543. DOI: 10.1111/obr.12742
Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 2018;6(3):223-36. DOI: 10.1016/S2213-8587(17)30200-0
Russell CG, Russell A. A biopsychosocial approach to processes and pathways in the development of overweight and obesity in childhood: Insights from developmental theory and research. Obes Rev. 2019;20(5):725-49. DOI: 10.1111/obr.12838
Tappia P, Defries D. Prevalence, Consequences, Causes and Management of Obesity. In: Paramjit S Tappia, editors. Pathophysiology of Obesity-Induced Health Complications. Switzerland: Springer; 2020. p. 3-22.
Brandkvist M, Bjørngaard JH, Ødegård RA, Åsvold BO, Sund ER, Vie GÅ. Quantifying the impact of genes on body mass index during the obesity epidemic: longitudinal findings from the HUNT Study. BMJ. 2019;366:l4067. DOI: 10.1136/bmj.l4067
Mǎrginean CO, Mǎrginean C, Meliţ LE. New Insights Regarding Genetic Aspects of Childhood Obesity: A Minireview. Front Pediatr. 2018;6:271. DOI: 10.3389/fped.2018.00271
Justice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, et al18. . Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nat Genet. 2019;51(3):452-69. DOI: 10.1038/s41588-018-0334-2
Silventoinen K, Rokholm B, Kaprio J, Sørensen TI. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int J Obes (Lond). 2010;34(1):29-40. DOI: 10.1038/ijo.2009.177
Mărginean C, Mărginean CO, Lancu M, Meliţ LE, Tripon F, Bănescu C. The FTO rs9939609 and LEPR rs1137101 mothers-newborns gene polymorphisms and maternal fat mass index effects on anthropometric characteristics in newborns: A cross-sectional study on mothers-newborns gene polymorphisms-The FTO-LEPR Study (STROBE-compliant article). Medicine (Baltimore). 2016;95(49):e5551. DOI: 10.1097/MD.0000000000005551
Mărginean CO, Mărginean C, Voidăzan S, Meliţ L, Crauciuc A, Duicu C, et al21. . Correlations Between Leptin Gene Polymorphisms 223 A/G, 1019 G/A, 492 G/C, 976 C/A, and Anthropometrical and Biochemical Parameters in Children With Obesity: A Prospective Case-Control Study in a Romanian Population-The Nutrichild Study. Medicine (Baltimore). 2016;95(12):e3115. DOI: 10.1097/MD.0000000000003115
Mărginean C, Mărginean CO, Bănescu C, Meliţ L, Tripon F, Iancu M. Impact of demographic, genetic, and bioimpedance factors on gestational weight gain and birth weight in a Romanian population: A cross-sectional study in mothers and their newborns: the Monebo study (STROBE-compliant article). Medicine (Baltimore). 2016;95(27):e4098. DOI: 10.1097/MD.0000000000004098
Mărginean CO, Mărginean C, Iancu M, Moldovan VG, Melit LE, Bănescu C. The impact of TNF-α 308G>A gene polymorphism on children's overweight risk and an assessment of biochemical variables: A cross-sectional single-center experience. Pediatr Neonatol. 2019;60(1):19-27. DOI: 10.1016/j.pedneo.2018.03.003
Mărginean C, Mărginean CO, Lancu M, Szabo B, Cucerea M, Melit LE, et al24. . The role of TGF-β1 869 T > C and PPAR γ2 34 C > G polymorphisms, fat mass, and anthropometric characteristics in predicting childhood obesity at birth: A cross-sectional study according the parental characteristics and newborn's risk for child obesity (the newborns obesity's risk) NOR study. Medicine (Baltimore). 2016;95(29):e4265. DOI: 10.1097/MD.0000000000004265
Mărginean CO, Bănescu C, Duicu C, Voidăzan S, Mărginean C. Angiotensin-converting enzyme gene insertion/deletion polymorphism in nutritional disorders in children. Eur J Nutr. 2015;54(8):1245-54. DOI: 10.1007/s00394-014-0802-0
Mǎrginean C, Bǎnescu CV, Mǎrginean CO, Tripon F, Melit LE, Lancu M. Glutathione S-transferase (GSTM1, GSTT1) gene polymorphisms, maternal gestational weight gain, bioimpedance factors and their relationship with birth weight: a cross-sectional study in Romanian mothers and their newborns. Romanian J Morphol Embryol. 2017 [acceso 30/07/2020];58:1285-93. Disponible en: Disponible en: https://rjme.ro/RJME/resources/files/58041712851293.pdf 26.
Kolačkov K, Łaczmański Ł, Lwow F, Ramsey D, Zdrojowy-Wełna A, Tupikowska M, et al27. . The Frequencies of Haplotypes of FTO Gene Variants and Their Association with the Distribution of Body Fat in Non-Obese Poles. Adv Clin Exp Med. 2016;25(1):33-42. DOI: 10.17219/acem/60645
Faith MS, Epstein LH. Healthy Homes and Obesogenic Genes in Young Children: Rigorous Behavioral Theory and Measurement and the Detection of Gene-Environment Interactions. JAMA Pediatr. 2018;172(12):1121-2. DOI: 10.1001/jamapediatrics.2018.1945
Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, et al29. . Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018;50(1):26-41. DOI: 10.1038/s41588-017-0011-x.
Reuter CP, Burgos MS, Bernhard JC, Tornquist D, Klinger EI, Borges TS, et al30. . Association between overweight and obesity in schoolchildren with rs9939609 polymorphism (FTO) and family history for obesity. J Pediatr (Rio J). 2016;92(5):493-8. DOI: 10.1016/j.jped.2015.11.005
Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359(24):2558-66. DOI: 10.1016/j.jped.2015.11.005
Tanofsky-Kraff M, Han JC, Anandalingam K, Shomaker LB, Columbo KM, Wolkoff LE, et al32. . The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am J Clin Nutr. 2009;90(6):1483-8. DOI: 10.3945/ajcn.2009.28439
Yang M, Xu Y, Liang L, Fu J, Xiong F, Liu G, et al33. . The effects of genetic variation in FTO rs9939609 on obesity and dietary preferences in Chinese Han children and adolescents. PLoS One. 2014;9(8):e104574. DOI: 10.1371/journal.pone.0104574
Pereira Pde A, Alvim-Soares AM Jr, Sandrim VC, Lanna CM, Souza-Costa DC, Belo Vde A, et al. Lack of association between genetic polymorphism of FTO, AKT1 and AKTIP in childhood overweight and obesity. J Pediatr (Rio J). 2016;92(5):521-7. DOI: 10.1016/j.jped.2015.12.007
Grant SF, Li M, Bradfield JP, Kim CE, Annaiah K, Santa E, et al35. . Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One. 2008;3(3):e1746. DOI: 10.1371/journal.pone.0001746
Zou ZC, Mao LJ, Shi YY, Chen JH, Wang LS, Cai W. Effect of exercise combined with dietary intervention on obese children and adolescents associated with the FTO rs9939609 polymorphism. Eur Rev Med Pharmacol Sci. 2015 [acceso 30/07/2020];19:4569-75. Disponible en: Disponible en: https://www.europeanreview.org/wp/wp-content/uploads/4569-4575.pdf 36.
Prakash J, Mittal B, Srivastava A, Awasthi S, Srivastava N. Association of FTO rs9939609 SNP with Obesity and Obesity- Associated Phenotypes in a North Indian Population. Oman Med J. 2016;31(2):99-106. DOI: 10.5001/omj.2016.20
Nesrine Z, Haithem H, Imen B, Fadoua N, Asma O, Fadhel NM, et al38. . Leptin and Leptin receptor polymorphisms, plasma Leptin levels and obesity in Tunisian volunteers. Int J Exp Pathol. 2018;99(3):121-130. DOI: 10.1111/iep.12271
Golshani H, Haghani K, Dousti M, Bakhtiyari S. Association of TNF-α 308 G/A Polymorphism With Type 2 Diabetes: A Case-Control Study in the Iranian Kurdish Ethnic Group. Osong Public Health Res Perspect. 2015;6(2):94-9. DOI: 10.1016/j.phrp.2015.01.003
Gupta V, Gupta A, Jafar T, Gupta VA, Agrawal S, Srivastava N, et al40. . Association of TNF-α promoter gene G-308A polymorphism with metabolic syndrome, insulin resistance, serum TNF-α and leptin levels in Indian adult women. Cytokine. 2012;57(1):32-6. DOI: 10.1016/j.cyto.2011.04.012
Włodarczyk M, Ciebiera M, Nowicka G. TNF-α G-308A genetic variants, serum CRP-hs concentration and DNA damage in obese women. Mol Biol Rep. 2020;47(2):855-66. Epub 2019 Mar 21. DOI: 10.1007/s11033-019-04764-0. Erratum in: Mol Biol Rep. 2019 Jun;46(3):3613.
Darogha SN. Serum levels of TNF-a and IFN-g gene polymorphism in type 2 diabetes mellitus in kurdish patients. Cell Mol Biol (Noisy-le-grand). 2021;67(2):171-7. DOI: 10.14715/cmb/2021.67.2.27
Hedayati M, Sharifi K, Rostami F, Daneshpour MS, Zarif Yeganeh M, Azizi F. Association between TNF-α promoter G-308A and G-238A polymorphisms and obesity. Mol Biol Rep. 2012;39(2):825-9. DOI: 10.1007/s11033-011-0804-4
Lazopoulou N, Gkioka E, Ntalla I, Pervanidou P, Magiakou AM, Roma-Giannikou E, et al44. . The combined effect of MC4R and FTO risk alleles on childhood obesity in Greece. Hormones (Athens). 2015;14(1):126-33. DOI: 10.14310/horm.2002.1524
García-Solís P, Reyes-Bastidas M, Flores K, García OP, Rosado JL, Méndez-Villa L, et al45. . Fat mass obesity-associated (FTO) (rs9939609) and melanocortin 4 receptor (MC4R) (rs17782313) SNP are positively associated with obesity and blood pressure in Mexican school-aged children. Br J Nutr. 2016:1-7. DOI: 10.1017/S0007114516003779
Bordoni L, Marchegiani F, Piangerelli M, Napolioni V, Gabbianelli R. Obesity-related genetic polymorphisms and adiposity indices in a young Italian population. IUBMB Life. 2017;69(2):98-105. DOI: 10.1002/iub.1596
Wu L, Gao L, Zhao X, Zhang M, Wu J, Mi J. Associations of Two Obesity-Related Single-Nucleotide Polymorphisms with Adiponectin in Chinese Children. Int J Endocrinol. 2017;2017:6437542. DOI: 10.1155/2017/6437542
Obregón AM, Oyarce K, Santos JL, Valladares M, Goldfield G. Association of the melanocortin 4 receptor gene rs17782313 polymorphism with rewarding value of food and eating behavior in Chilean children. J Physiol Biochem. 2017;73(1):29-35. DOI: 10.1007/s13105-016-0521-5
Molou E, Schulpis KH, Birbilis C, Thodi G, Georgiou V, Dotsikas Y, et al49. . Early screening of FTO and MC4R variants in newborns of Greek origin. J Pediatr Endocrinol Metab. 2015;28(5-6):619-22. DOI: 10.1515/jpem-2014-0320
Bjørnland T, Langaas M, Grill V, Mostad IL. Assessing gene-environment interaction effects of FTO, MC4R and lifestyle factors on obesity using an extreme phenotype sampling design: Results from the HUNT study. PLoS One. 2017;12(4):e0175071. DOI: 10.1371/journal.pone.0175071
Bhori M, Rastogi V, Tungare K, Marar T. A review on interplay between obesity, lipoprotein profile and nutrigenetics with selected candidate marker genes of type 2 diabetes mellitus. Mol Biol Rep. 2021. PMID: 34669123. DOI: 10.1007/s11033-021-06837-5
Bhatti GK, Kaur S, Vijayvergiya R, Bhadada SK, Mastana S, Singh B, et al52. . Functional Variant Enhances Susceptibility to Insulin Resistance and Dyslipidemia with Metabolic Syndrome in Asian Indians. Int J Diabetes Metab. 2018;21:8-15. DOI: 10.1159/000492478
Böttcher Y, Körner A, Reinehr T, Enigk B, Kiess W, Stumvoll M, et al53. . ENPP1 variants and haplotypes predispose to early onset obesity and impaired glucose and insulin metabolism in German obese children. J Clin Endocrinol Metab. 2006;91(12):4948-52. DOI: 10.1210/jc.2006-0540
Albegali AA, Shahzad M, Ullah MI, Mahmood S, Rashid M. Association of genetic polymorphism of PC-1 gene (rs1044498 Lys121Gln) with insulin-resistant type 2 diabetes mellitus in Punjabi Population of Pakistan. Mol Genet Genomic Med. 2019;7(8):e775. DOI: 10.1002/mgg3.775
Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. PPAR Agonists and Metabolic Syndrome: An Established Role? Int J Mol Sci. 2018;19(4):1197. DOI: 10.3390/ijms19041197
Almeida SS, Corgosinho FC, Amorim CE, Gregnani MF, Campos RM, Masquio DC, et al56. . Different metabolic responses induced by long-term interdisciplinary therapy in obese adolescents related to ACE I/D polymorphism. J Renin Angiotensin Aldosterone Syst. 2017;18(2):1470320317703451. DOI: 10.1177/1470320317703451
Vallée A, Lévy BL, Blacher J. Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Curr Hypertens Rep. 2018;20(7):62. DOI: 10.1007/s11906-018-0860-4
Mishra D, Naorem K, Saraswathy KN. Angiotensin-Converting Enzyme Gene Insertion/Deletion Polymorphism and Cardiometabolic Risk Factors: A Study Among Bhil Tribal Population from Two Environmental Settings. Biochem Genet. 2018;56(4):295-314. DOI: 10.1007/s10528-018-9845-x
Ponsonby AL, Blizzard L, Pezic A, Cochrane JA, Ellis JA, Morley R, et al59. . Adiposity gain during childhood, ACE I/D polymorphisms and metabolic outcomes. Obesity (Silver Spring). 2008;16(9):2141-7. DOI: 10.1038/oby.2008.302
Pan YH, Wang M, Huang YM, Wang YH, Chen YL, Geng LJ, et al60. . Gene I/D Polymorphism and Obesity in 1,574 Patients with Type 2 Diabetes Mellitus. Dis Markers. 2016;2016:7420540. DOI: 10.1155/2016/7420540
Yang SA. Lack of association between glutathione s-transferase mu 1 (GSTM1) gene polymorphisms and obesity. J Exerc Rehabil. 2017;13(5):608-12. DOI: 10.12965/jer.1735128.564
Ghosh Dastidar S, Jagatheesan G, Haberzettl P, Shah J, Hill BG, Bhatnagar A, et al62. . Glutathione S-transferase P deficiency induces glucose intolerance via JNK-dependent enhancement of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2018;315(5):E1005-E1018. DOI: 10.1152/ajpendo.00345.2017
Stoian A, Bănescu C, Bălaşa RI, Moţăţăianu A, Stoian M, Moldovan VG, et al63. . Influence of GSTM1, GSTT1, and GSTP1 Polymorphisms on Type 2 Diabetes Mellitus and Diabetic Sensorimotor Peripheral Neuropathy Risk. Dis Markers. 2015;2015:638693. DOI: 10.1155/2015/638693
Wanjun Y, Xingcong M, Xiaoyan G, Shuqun Z. Association Between Leptin (-2548G/A) Genes Polymorphism and Breast Cancer Susceptibility. Medicine (Baltimore).2016; 95(34):e577d. DOI: 10.1097/MD.000000000000256664.
Menezes AMB, Oliveira PD, Wehrmeister FC, Assunção MCF, Oliveira IO, Tovo-Rodrigues L, et al65. . Association of modifiable risk factors and IL-6, CRP, and adiponectin: Findings from the 1993 Birth Cohort, Southern Brazil. PLoS One. 2019;14(5):e0216202. DOI: 10.1371/journal.pone.0216202
Valladares M, Obregón AM, Chaput JP. Association between genetic variants of the clock gene and obesity and sleep duration. J Physiol Biochem. 2015;71(4):855-60. DOI: 10.1007/s13105-015-0447-3
Oana MC, Septimiu V, Claudiu M. The role of IL-6 572 C/G, 190 C/T, and 174 G/C gene polymorphisms in children's obesity. Eur J Pediatr. 2014;173(10):1285-96. DOI: 10.1007/s00431-014-2315-5
Carr KA, Lin H, Fletcher KD, Sucheston L, Singh PK, Salis RJ, et al68. . Two functional serotonin polymorphisms moderate the effect of food reinforcement on BMI. Behav Neurosci. 2013;127(3):387-99. DOI: 10.1037/a0032026
Silveira PP, Gaudreau H, Atkinson L, Fleming AS, Sokolowski MB, Steiner M, et al69. . Genetic Differential Susceptibility to Socioeconomic Status and Childhood Obesogenic Behavior: Why Targeted Prevention May Be the Best Societal Investment. JAMA Pediatr. 2016;170(4):359-64. DOI: 10.1001/jamapediatrics.2015.4253
Levitan RD, Jansen P, Wendland B, Tiemeier H, Jaddoe VW, Silveira PP, et al70. . A DRD4 gene by maternal sensitivity interaction predicts risk for overweight or obesity in two independent cohorts of preschool children. J Child Psychol Psychiatry. 2017;58(2):180-8. DOI: 10.1111/jcpp.12646
Poston L, Caleyachetty R, Cnattingius S, Corvalán C, Uauy R, Herring S, et al71. . Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016;4(12):1025-36. DOI: 10.1016/S2213-8587(16)30217-0
Chang R, Mei H, Zhang Y, Xu K, Yang S, Zhang J. Early childhood body mass index trajectory and overweight/obesity risk differed by maternal weight status. Eur J Clin Nutr. 2021. 76. 450-455.DOI: 10.1038/s41430-021-00975-6
Li Y, Pollock CA, Saad S. Aberrant DNA Methylation Mediates the Transgenerational Risk of Metabolic and Chronic Disease Due to Maternal Obesity and Overnutrition. Genes (Basel). 2021;12(11):1653. DOI: 10.3390/genes12111653
Opsahl JO, Moen GH, Qvigstad E, Böttcher Y, Birkeland KI, Sommer C. Epigenetic signatures associated with maternal body mass index or gestational weight gain: a systematic review. J Dev Orig Health Dis. 2021;12(3):373-383. DOI: 10.1017/S2040174420000811
Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF, et al75. . Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes (Lond). 2015;39(4):650-7. DOI: 10.1038/ijo.2013.193
Dutton H, Borengasser SJ, Gaudet LM, Barbour LA, Keely EJ. Obesity in Pregnancy: Optimizing Outcomes for Mom and Baby. Med Clin North Am. 2018;102(1):87-106. DOI: 10.1016/j.mcna.2017.08.008
Nicholas LM, Morrison JL, Rattanatray L, Zhang S, Ozanne SE, McMillen IC. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes (Lond). 2016;40(2):229-38. DOI: 10.1038/ijo.2015.178
Wesolowski SR, Kasmi KC, Jonscher KR, Friedman JE. Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol. 2017;14(2):81-96. DOI: 10.1038/nrgastro.2016.160
Boyle KE, Patinkin ZW, Shapiro AL, Baker PR, Dabelea D, Friedman JE. Mesenchymal Stem Cells From Infants Born to Obese Mothers Exhibit Greater Potential for Adipogenesis: The Healthy Start Baby BUMP Project. Diabetes. 2016;65(3):647-59. DOI: 10.2337/db15-0849
Lin X, Lim IY, Wu Y, Teh AL, Chen L, Aris IM, et al80. . Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome. BMC Med. 2017;15(1):50. DOI: 10.1186/s12916-017-0800-1
Rushing A, Sommer EC, Zhao S, Po'e EK, Barkin SL. Salivary epigenetic biomarkers as predictors of emerging childhood obesity. BMC Med Genet. 2020;21(1):34. DOI: 10.1186/s12881-020-0968-7
Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M, et al82. . Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 2010;6(12):e1001252. DOI: 10.1371/journal.pgen.1001252
Keag OE, Norman JE, Stock SJ. Long-term risks and benefits associated with cesarean delivery for mother, baby, and subsequent pregnancies: Systematic review and meta-analysis. PLoS Med. 2018;15(1):e1002494. DOI: 10.1371/journal.pmed.1002494
Chavarro JE, Martín-Calvo N, Yuan C, Arvizu M, Rich-Edwards JW, Michels KB, et al84. . Association of Birth by Cesarean Delivery With Obesity and Type 2 Diabetes Among Adult Women. JAMA Netw Open. 2020;3(4):e202605. DOI: 10.1001/jamanetworkopen.2020.2605
Chen Q, Ming Y, Gan Y, Huang L, Zhao Y, Wang X, et al85. . The impact of cesarean delivery on infant DNA methylation. BMC Pregnancy Childbirth. 2021;21(1):265. DOI: 10.1186/s12884-021-03748-y
Almgren M, Schlinzig T, Gomez-Cabrero D, Gunnar A, Sundin M, Johansson S, et al86. . Cesarean delivery and hematopoietic stem cell epigenetics in the newborn infant: implications for future health? Am J Obstet Gynecol. 2014;211(5):502.e1-8. DOI: 10.1016/j.ajog.2014.05.014
Cai M, Loy SL, Tan KH, Godfrey KM, Gluckman PD, Chong YS, et al87. . Association of Elective and Emergency Cesarean Delivery With Early Childhood Overweight at 12 Months of Age. JAMA Netw Open. 2018;1(7):e185025. DOI: 10.1001/jamanetworkopen.2018.5025
Mameli C, Mazzantini S, Zuccotti GV. Nutrition in the First 1000 Days: The Origin of Childhood Obesity. Int J Environ Res Public Health. 2016;13(9):838. DOI: 10.3390/ijerph13090838
Pauwels S, Symons L, Vanautgaerden EL, Ghosh M, Duca RC, Bekaert B, et al89. . The Influence of the Duration of Breastfeeding on the Infant's Metabolic Epigenome. Nutrients. 2019;11(6):1408. DOI: 10.3390/nu11061408
Azad MB, Vehling L, Chan D, Klopp A, Nickel NC, McGavock JM, et al90. . Infant Feeding and Weight Gain: Separating Breast Milk From Breastfeeding and Formula From Food. Pediatrics. 2018;142(4):e20181092. DOI: 10.1542/peds.2018-1092
Bergmeier H, Paxton SJ, Milgrom J, Anderson SE, Baur L, Hill B, et al91. . Early mother-child dyadic pathways to childhood obesity risk: A conceptual model. Appetite. 2020;144:104459. DOI: 10.1016/j.appet.2019.104459
Konttinen H, van Strien T, Männistö S, Jousilahti P, Haukkala A. Depression, emotional eating and long-term weight changes: a population-based prospective study. Int J Behav Nutr Phys Act. 2019;16(1):28. DOI: 10.1186/s12966-019-0791-8
Trujino-Hernández PE, Flores-Peña Y. Excess weight and depression associated with serotonin transporter gene polymorphism (5-HTTLPR): a systematic review. Enfermer Global. 2021 [acceso 30/07/2021];20(2):666-677. Disponible en: Disponible en: https://revistas.um.es/eglobal/article/download/432711/303171/1635051 93.
Vandeweghe L, Moens E, Braet C, Van Lippevelde W, Vervoort L, Verbeken S. Perceived effective and feasible strategies to promote healthy eating in young children: focus groups with parents, family child care providers and daycare assistants. BMC Public Health. 2016;16(1):1045. DOI: 10.1186/s12889-016-3710-9
Zarychta K, Mullan B, Luszczynska A. It doesn't matter what they say, it matters how they behave: Parental influences and changes in body mass among overweight and obese adolescents. Appetite. 2016;96:47-55. DOI: 10.1016/j.appet.2015.08.040
Fayet-Moore F, Kim J, Sritharan N, Petocz P. Impact of Breakfast Skipping and Breakfast Choice on the Nutrient Intake and Body Mass Index of Australian Children. Nutrients. 2016;8(8):487. DOI: 10.3390/nu8080487
Scaglioni S, De Cosmi V, Ciappolino V, Parazzini F, Brambilla P, Agostoni C. Factors Influencing Children's Eating Behaviours. Nutrients. 2018;10(6):706. DOI: 10.3390/nu10060706
Wood AC, Momin S, Senn M, Hughes SO. Pediatric Eating Behaviors as the Intersection of Biology and Parenting: Lessons from the Birds and the Bees. Curr Nutr Rep. 2018;7(1):1-9. DOI: 10.1007/s13668-018-0223-4
Link JC, Reue K. Genetic Basis for Sex Differences in Obesity and Lipid Metabolism. Ann Rev Nutr. 2017;37:225-245. DOI: 10.1146/annurev-nutr-071816-064827
Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med. 2019;25(11):1657-66. DOI: 10.1038/s41591-019-0643-8
Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, et al101. . Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet. 2010;42(11):949-60. DOI: 10.1038/ng.685
Zore T, Palafox M, Reue K. Sex differences in obesity, lipid metabolism, and inflammation-A role for the sex chromosomes? Mol Metab. 2018;15:35-44. DOI: 10.1016/j.molmet.2018.04.003
Iguacel I, Gasch-Gallén Á, Ayala-Marín AM, De Miguel-Etayo P, Moreno LA. Social vulnerabilities as risk factor of childhood obesity development and their role in prevention programs. Int J Obes (Lond). 2021;45(1):1-11. DOI: 10.1038/s41366-020-00697-y
Williams AS, Ge B, Petroski G, Kruse RL, McElroy JA, Koopman RJ. Socioeconomic Status and Other Factors Associated with Childhood Obesity. J Am Board Fam Med. 2018;31(4):514-521. DOI: 10.3122/jabfm.2018.04.170261
Vazquez CE, Cubbin C. Socioeconomic Status and Childhood Obesity: a Review of Literature from the Past Decade to Inform Intervention Research. Curr Obes Rep. 2020;9(4):562-570. DOI: 10.1007/s13679-020-00400-2
Ayala-Marín AM, Iguacel I, Miguel-Etayo P, Moreno LA. Consideration of Social Disadvantages for Understanding and Preventing Obesity in Children. Front Public Health. 2020;8:423. DOI: 10.3389/fpubh.2020.00423
Meyer SC. Maternal employment and childhood overweight in Germany. Econ Hum Biol. 2016;23:84-102. DOI: 10.1016/j.ehb.2016.05.003
Lang J, McKie J, Smith H, McLaughlin A, Gillberg C, Shiels PG, Minnis H. Adverse childhood experiences, epigenetics and telomere length variation in childhood and beyond: a systematic review of the literature. Eur Child Adolesc Psychiatry. 2020;29(10):1329-1338. DOI: 10.1007/s00787-019-01329-1
Weihrauch-Blüher S, Richter M, Staege MS. Body weight regulation, socioeconomic status and epigenetic alterations. Metabolism. 2018;85:109-115. DOI: 10.1016/j.metabol.2018.03.006