2023, Number 1
Mitochondrion: their functions, relationships with cellular organelles, cell survival and mitochondrial medicine
Language: Spanish
References: 66
Page: 1-11
PDF size: 471.50 Kb.
ABSTRACT
For years, it was considered that the most important function of mitochondria was to provide the cell with energy in the form of ATP or even to function as a buffer of the cytosolic calcium concentration. However, it has been shown that mitochondria are a key part of signaling cascades or either, they establish shared functions with intra- and extracellular structures, allowing to maintain homeostasis and cell function. In addition, there are several reports showing that healthy cells are capable of transferring mitochondria to the bloodstream or to damaged cells with the aim of providing protection or to improve their bioenergetic condition under specific conditions. The signaling mechanisms for the recognition of marker molecules are decisive to establish the transfer of mitochondria between cells through vesicular structures or tunnels (TNT), among other systems. Currently, it has been developed strategies for mitochondrial isolation, which in turn, are injected into the tissues allowing their functional recovery, opening the door to what has been called “mitochondrial medicine” or “mitocure”. Although these findings suggest that mitochondria could be a new prophylactic method for diseases or metabolic disorders, it is also necessary to analyze mitochondrial transfer may not always be positive for the organism in certain ailments.REFERENCES
Al Amir Dache, Z., Otandault, A., Tanos, R., Pastor, B.,Meddeb, R., Sanchez, C., Arena, G., Lasorsa, L., Bennett,A., Grange, T., El Messaoudi, S., Mazard, T., Prevostel, C.& Thierry, A. R. (2020). Blood contains circulating cellfreerespiratory competent mitochondria. FASEB Journal,34(3), 3616–3630. https://doi.org/10.1096/fj.201901917RR
Bhatti, J. S., Bhatti, G. K. & Reddy, P. H. (2017). Mitochondrialdysfunction and oxidative stress in metabolic disorders - Astep towards mitochondria based therapeutic strategies.Biochimica Et Biophysica Acta. Molecular Basis ofDisease, 1863(5), 1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010
Burt, R., Dey, A., Aref, S., Aguiar, M., Akarca, A., Bailey, K.,Day, W., Hooper, S., Kirkwood, A., Kirschner, K., Lee, S.W., Lo Celso, C., Manji, J., Mansour, M. R., Marafioti, T.,Mitchell, R. J., Muirhead, R. C., Cheuk Yan Ng, K., Pospori,C., Puccio, I., Zuborne-Alapi, K., Sahai, E.& Fielding A.K. (2019). Activated stromal cells transfer mitochondria torescue acute lymphoblastic leukemia cells from oxidativestress. Blood, 134(17), 1415–1429. https://doi.org/10.1182/blood.2019001398
Esch, T., Stefano, G. B., Ptacek, R. & Kream, R. M. (2020).Emerging Roles of Blood-Borne Intact and RespiringMitochondria as Bidirectional Mediators of Pro- andAnti-Inflammatory Processes. Medical Science Monitor:International Medical Journal of Experimental andClinical Research, 26, e924337. https://doi.org/10.12659/MSM.924337
Feng, Y., Zhu, R., Shen, J., Wu, J., Lu, W., Zhang, J., Zhang, J.& Liu, K. (2019). Human bone marrow mesenchymal stemcells rescue endothelial cells experiencing chemotherapystress by mitochondrial transfer via tunneling nanotubes.Stem Cells and Development, 28(10), 674–682. https://doi.org/10.1089/scd.2018.0248
Guariento, A., Piekarski, B. L., Doulamis, I. P., Blitzer, D.,Ferraro, A. M., Harrild, D. M., Zurakowski, D., Del Nido,P. J., McCully, J. D. & Emani, S. M. (2021). Autologousmitochondrial transplantation for cardiogenic shock inpediatric patients following ischemia-reperfusion injury. TheJournal of Thoracic and Cardiovascular Surgery, 162(3),992–1001. https://doi.org/10.1016/j.jtcvs.2020.10.151
Han, H., Hu, J., Yan, Q., Zhu, J., Zhu, Z., Chen, Y., Sun, J. &Zhang, R. (2016). Bone marrow-derived mesenchymalstem cells rescue injured H9c2 cells via transferring intactmitochondria through tunneling nanotubes in an in vitrosimulated ischemia/reperfusion model. Molecular MedicineReports, 13(2), 1517–1524. https://doi.org/10.3892/mmr.2015.4726
Hayashida, K., Takegawa, R., Shoaib, M., Aoki, T., Choudhary,R. C., Kuschner, C. E., Nishikimi, M., Miyara, S. J., Rolston,D. M., Guevara, S., Kim, J., Shinozaki, K., Molmenti, E.P. & Becker, L. B. (2021). Mitochondrial transplantationtherapy for ischemia reperfusion injury: a systematic reviewof animal and human studies. Journal of TranslationalMedicine, 19(1), 214. https://doi.org/10.1186/s12967-021-02878-3
Liskova, A., Samec, M., Koklesova, L., Kudela, E., Kubatka,P. & Golubnitschaja, O. (2021). Mitochondriopathiesas a Clue to Systemic Disorders-Analytical Tools andMitigating Measures in Context of Predictive, Preventive,and Personalized (3P) Medicine. International Journal ofMolecular Sciences, 22(4), 2007. https://doi.org/10.3390/ijms22042007
Liu, K., Ji, K., Guo, L., Wu, W., Lu, H., Shan, P. & Yan, C.(2014). Mesenchymal stem cells rescue injured endothelialcells in an in vitro ischemia-reperfusion model viatunneling nanotube like structure-mediated mitochondrialtransfer. Microvascular Research, 92, 10–18. https://doi.org/10.1016/j.mvr.2014.01.008
López-Crisosto, C., Bravo-Sagua, R., Rodriguez-Peña, M.,Mera, C., Castro, P. F., Quest, A. F., Rothermel, B. A.,Cifuentes, M. & Lavandero, S. (2015). ER-to-mitochondriamiscommunication and metabolic diseases. Biochimica etBiophysica Acta, 1852(10 Pt A), 2096–2105. https://doi.org/10.1016/j.bbadis.2015.07.011
Marlein, C. R., Piddock, R. E., Mistry, J. J., Zaitseva, L.,Hellmich, C., Horton, R. H., Zhou, Z., Auger, M. J.,Bowles, K. M. & Rushworth, S. A. (2019). CD38-drivenmitochondrial trafficking promotes bioenergetic plasticityin multiple myeloma. Cancer Research, 79(9), 2285–2297.https://doi.org/10.1158/0008-5472.CAN-18-0773
Marlein, C. R., Zaitseva, L., Piddock, R. E., Robinson, S. D.,Edwards, D. R., Shafat, M. S., Zhou, Z., Lawes, M., Bowles,K. M. & Rushworth, S. A. (2017). NADPH oxidase-2derived superoxide drives mitochondrial transfer from bonemarrow stromal cells to leukemic blasts. Blood, 130(14),1649–1660. https://doi.org/10.1182/blood-2017-03-772939
Mokhtari, B., Yavari, R., Badalzadeh, R. & Mahmoodpoor, A.(2022). An Overview on mitochondrial-based therapiesin sepsis-related myocardial dysfunction: mitochondrialtransplantation as a promising approach. The CanadianJournal of Infectious Diseases & Medical Microbiology,2022, 3277274. https://doi.org/10.1155/2022/3277274
Nicholls, D. G. & Ferguson, S. J. (2013). Bioenergetics. SanDiego: Academic Press, Elsevier. ISBN: 9780123884251(Paperback). ISBN: 9780123884312 (eBook).Paliwal, S., Chaudhuri, R., Agrawal, A. & Mohanty, S. (2018a).Human tissue-specific MSCs demonstrate differentialmitochondria transfer abilities that may determine theirregenerative abilities. Stem Cell Research & Therapy, 9(1),298. https://doi.org/10.1186/s13287-018-1012-0
van der Vlist, M., Raoof, R., Willemen, H., Prado, J., Versteeg,S., Martin Gil, C., Vos, M., Lokhorst, R. E., Pasterkamp,R. J., Kojima, T., Karasuyama, H., Khoury-Hanold, W.,Meyaard, L. & Eijkelkamp, N. (2022). Macrophages transfermitochondria to sensory neurons to resolve inflammatorypain. Neuron, 110(4), 613–626.e9. https://doi.org/10.1016/j.neuron.2021.11.020
Zhang, Y., Yu, Z., Jiang, D., Liang, X., Liao, S., Zhang, Z., Yue,W., Li, X., Chiu, S. M., Chai, Y. H., Liang, Y., Chow, Y.,Han, S., Xu, A., Tse, H. F. & Lian, Q. (2016). iPSC-MSCswith high intrinsic MIRO1 and sensitivity to TNF-α yieldefficacious mitochondrial transfer to rescue anthracyclineinducedcardiomyopathy. Stem Cell Reports, 7(4), 749–763.https://doi.org/10.1016/j.stemcr.2016.08.009