2023, Number 1
Testosterone treatment positively regulates protein and mRNA levels of Mn-dependent superoxide dismutase enzyme in pancreatic islets of male rats (Rattus norvegicus)
Language: Spanish
References: 45
Page: 1-11
PDF size: 470.60 Kb.
ABSTRACT
The androgenic hormone testosterone protects against pharmacological-induced damage to pancreatic islets in rodent models of diabetes. The increased production of reactive oxygen species damage the pancreatic islets through oxidative stress and apoptosis. The precise protective mechanism of testosterone has yet to be determined. The aim of this study was to evaluate the effect of post-gonadectomy testosterone substitution on the expression of two key antioxidant enzymes, Mn-dependent superoxide dismutase and catalase. The protein expression of the enzymes was examined by immunohistochemistry in male rats: intact, gonadectomized, and gonadectomized followed by testosterone substitution. mRNA expression was analyzed by reverse transcription-quantitative polymerase chain reaction on pancreatic islets cultured with testosterone, dihydrotestosterone (DHT) or the vehicle. Testosterone increased the protein level of MnSOD in pancreatic tissue and its mRNA expression in cultured pancreatic islets. DHT (a non-aromatizing androgen) had similar effects. For catalase, only the mRNA expression increased by testosterone treatment. Testosterone induced overexpression of MnSOD protein and mRNA in pancreatic islets through a mechanism unrelated to androgen aromatization, most likely involving androgen receptors, demonstrating the implications of testosterone in preventing damage to insulin-producing cells by oxidative stress.REFERENCES
Domingueti, C. P., Dusse, L. M., Carvalho, M.d, de Sousa, L. P.,Gomes, K. B. & Fernandes, A. P. (2016). Diabetes mellitus:The linkage between oxidative stress, inflammation,hypercoagulability and vascular complications. Journal ofDiabetes and its Complications, 30(4), 738–745. https://doi.org/10.1016/j.jdiacomp.2015.12.018
Guzmán, D. C., Mejía, G. B., Vázquez, I. E., García, E.H., del Angel, D. S. & Olguín, H. J. (2005). Effect oftestosterone and steroids homologues on indolaminesand lipid peroxidation in rat brain. The Journal of SteroidBiochemistry and Molecular Biology, 94(4), 369–373.https://doi.org/10.1016/j.jsbmb.2004.11.006
Harada, N., Katsuki, T., Takahashi, Y., Masuda, T., Yoshinaga,M., Adachi, T., Izawa, T., Kuwamura, M., Nakano, Y.,Yamaji, R. & Inui, H. (2015). Androgen receptor silencesthioredoxin-interacting protein and competitively inhibitsglucocorticoid receptor-mediated apoptosis in pancreaticβ-Cells. Journal of Cellular Biochemistry, 116(6), 998–1006. https://doi.org/10.1002/jcb.25054
Harada, N., Yoda, Y., Yotsumoto, Y., Masuda, T., Takahashi,Y., Katsuki, T., Kai, K., Shiraki, N., Inui, H. & Yamaji,R. (2018). Androgen signaling expands β-cell mass inmale rats and β-cell androgen receptor is degraded underhigh-glucose conditions. American journal of physiology.Endocrinology and Metabolism, 314(3), E274–E286.https://doi.org/10.1152/ajpendo.00211.2017
Kapoor, D., Goodwin, E., Channer, K. S. & Jones, T. H.(2006). Testosterone replacement therapy improvesinsulin resistance, glycaemic control, visceral adiposityand hypercholesterolaemia in hypogonadal men with type2 diabetes. European Journal of Endocrinology, 154(6),899–906. https://doi-org.pbidi.unam.mx:2443/10.1530/eje.1.02166
Le May, C., Chu, K., Hu, M., Ortega, C. S., Simpson, E. R.,Korach, K. S., Tsai, M. J. & Mauvais-Jarvis, F. (2006).Estrogens protect pancreatic beta-cells from apoptosisand prevent insulin-deficient diabetes mellitus in mice.Proceedings of the National Academy of Sciences of theUnited States of America, 103(24), 9232–9237. https://doi.org/10.1073/pnas.0602956103
Li, R. J., Qiu, S. D., Wang, H. X., Tian, H., Wang, L. R. & Huo,Y. W. (2008). Androgen receptor: a new player associatedwith apoptosis and proliferation of pancreatic beta-cell intype 1 diabetes mellitus. Apoptosis: an International Journalon Programmed Cell Death, 13(8), 959–971. https://doi.org/10.1007/s10495-008-0230-9
Lin, B., Wang, J., Hong, X., Yan, X., Hwang, D., Cho, J. H.,Yi, D., Utleg, A. G., Fang, X., Schones, D. E., Zhao, K.,Omenn, G. S. & Hood, L. (2009). Integrated expressionprofiling and ChIP-seq analyses of the growth inhibitionresponse program of the androgen receptor. PLOS ONE,4(8), e6589. https://doi.org/10.1371/journal.pone.0006589
Mizukami, H., Takahashi, K., Inaba, W., Tsuboi, K., Osonoi,S., Yoshida, T. & Yagihashi, S. (2014). Involvement ofoxidative stress-induced DNA damage, endoplasmicreticulum stress, and autophagy deficits in the decline ofβ-cell mass in Japanese type 2 diabetic patients. DiabetesCare, 37(7), 1966–1974. https://doi.org/10.2337/dc13-2018
Navarro, G., Allard, C., Morford, J. J., Xu, W., Liu, S., Molinas,A. J., Butcher, S. M., Fine, N. H., Blandino-Rosano, M.,Sure, V. N., Yu, S., Zhang, R., Münzberg, H., Jacobson,D. A., Katakam, P. V., Hodson, D. J., Bernal-Mizrachi, E.,Zsombok, A. & Mauvais-Jarvis, F. (2018). Androgen excessin pancreatic β cells and neurons predisposes female miceto type 2 diabetes. JCI Insight, 3(12), e98607. https://doi.org/10.1172/jci.insight.98607
Ritschl, L. M., Fichter, A. M., Häberle, S., von Bomhard, A.,Mitchell, D. A., Wolff, K. D. & Mücke, T. (2015). Ketamine-Xylazine Anesthesia in Rats: Intraperitoneal versusIntravenous Administration Using a Microsurgical FemoralVein Access. Journal of Reconstructive Microsurgery,31(5), 343–347. https://doi.org/10.1055/s-0035-1546291
Sadowska-Krępa, E., Kłapcińska, B., Jagsz, S., Nowara, A.,Szołtysek-Bołdys, I., Chalimoniuk, M., Langfort, J. &Chrapusta, S. J. (2017). High-dose testosterone enanthatesupplementation boosts oxidative stress, but exerts littleeffect on the antioxidant barrier in sedentary adolescent malerat liver. Pharmacological Reports: PR, 69(4), 673–678.https://doi.org/10.1016/j.pharep.2017.02.023
Sasikumar, R., Jyoti Das, A. & Chandra Deka, S. (2021). Invitro cytoprotective activity of cyanidin 3-glucoside extractsfrom Haematocarpus validus pomace on streptozotocininduced oxidative damage in pancreatic β-cells. SaudiJournal of Biological Sciences, 28(9), 5338–5348. https://doi.org/10.1016/j.sjbs.2021.05.065
Wang, N., Yi, W. J., Tan, L., Zhang, J. H., Xu, J., Chen, Y.,Qin, M., Yu, S., Guan, J. & Zhang, R. (2017). Apigeninattenuates streptozotocin-induced pancreatic β cell damageby its protective effects on cellular antioxidant defense. Invitro Cellular & Developmental Biology. Animal, 53(6),554–563. https://doi.org/10.1007/s11626-017-0135-4
Xu, W., Niu, T., Xu, B., Navarro, G., Schipma, M. J. &Mauvais-Jarvis, F. (2017). Androgen receptor-deficientislet β-cells exhibit alteration in genetic markers ofinsulin secretion and inflammation. A transcriptomeanalysis in the male mouse. Journal of Diabetes and itsComplications, 31(5), 787–795. https://doi.org/10.1016/j.jdiacomp.2017.03.002