2023, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2023; 26 (1)
El tratamiento con testosterona regula positivamente los niveles de proteína y ARNm de la enzima superóxido dismutasa dependiente de Mn en los islotes pancreáticos de ratas macho (Rattus norvegicus)
Sosa-Larios TC, Morales-Miranda A, Palomar-Morales M, Rojas-Ochoa A, Rodríguez-Peña N, Morimoto S
Idioma: Español
Referencias bibliográficas: 45
Paginas: 1-11
Archivo PDF: 470.60 Kb.
RESUMEN
El aumento de la producción de especies reactivas de oxígeno daña a los islotes pancreáticos por estrés oxidativo y apoptosis en
algunos modelos de diabetes en roedores. Se ha observado que la testosterona los protege contra este daño, sin embargo, no se conoce
el mecanismo por el cual esta hormona ejerce su protección. El objetivo de este estudio fue evaluar el efecto de la administración de
testosterona a ratas macho gonadectomizadas sobre la expresión de las enzimas antioxidantes, superóxido dismutasa dependiente
de Mn (MnSOD) y catalasa. La expresión de las enzimas a nivel de la proteína, se estudió por inmunohistoquímica en ratas macho
intactas, gonadectomizadas y gonadectomizadas tratadas con testosterona. La expresión del ARNm se analizó por retrotranscripción y
reacción en cadena de la polimerasa en tiempo real, en islotes pancreáticos cultivados con testosterona, dihidrotestosterona (DHT) o
vehículo. En el caso de la catalasa, el tratamiento con testosterona solamente aumentó la expresión del ARNm. La testosterona indujo
la sobreexpresión de la proteína de MnSOD y del ARNm en los islotes pancreáticos a través de un mecanismo no relacionado con la
aromatización androgénica, en el que muy probablemente intervienen los receptores de andrógenos, lo que demuestra la participación
de la testosterona en la prevención de los daños causados por el estrés oxidativo en las células productoras de insulina.
REFERENCIAS (EN ESTE ARTÍCULO)
Ahlbom, E., Prins, G. S. & Ceccatelli, S. (2001). Testosteroneprotects cerebellar granule cells from oxidative stressinducedcell death through a receptor mediated mechanism.Brain Research, 892(2), 255–262. https://doi.org/10.1016/s0006-8993(00)03155-3
Alonso-Alvarez, C., Bertrand, S., Faivre, B., Chastel, O. &Sorci, G. (2007). Testosterone and oxidative stress: theoxidation handicap hypothesis. Proceedings. BiologicalSciences, 274(1611), 819–825. https://doi.org/10.1098/rspb.2006.3764
Alonso-Magdalena, P., Morimoto, S., Ripoll, C., Fuentes, E.& Nadal, A. (2006). The estrogenic effect of bisphenol Adisrupts pancreatic beta-cell function in vivo and inducesinsulin resistance. Environmental Health Perspectives,114(1), 106–112. https://doi.org/10.1289/ehp.8451
Beato, M. & Klug, J. (2000). Steroid hormone receptors: anupdate. Human Reproduction Update, 6(3), 225–236.https://doi.org/10.1093/humupd/6.3.225
Díaz-Sánchez, V., Morimoto, S., Morales, A., Robles-Díaz, G. &Cerbón, M. (1995). Androgen receptor in the rat pancreas:genetic expression and steroid regulation. Pancreas, 11(3),241–245. https://doi.org/10.1097/00006676-199510000-00005
Domingueti, C. P., Dusse, L. M., Carvalho, M.d, de Sousa, L. P.,Gomes, K. B. & Fernandes, A. P. (2016). Diabetes mellitus:The linkage between oxidative stress, inflammation,hypercoagulability and vascular complications. Journal ofDiabetes and its Complications, 30(4), 738–745. https://doi.org/10.1016/j.jdiacomp.2015.12.018
Drews, G. & Düfer, M. (2012). Role of K(ATP) channels inβ-cell resistance to oxidative stress. Diabetes, Obesity &Metabolism, 14 Suppl 3, 120–128. https://doi.org/10.1111/j.1463-1326.2012.01644.x
Eguchi, N., Vaziri, N. D., Dafoe, D. C. & Ichii, H. (2021). TheRole of Oxidative Stress in Pancreatic β Cell Dysfunctionin Diabetes. International Journal of Molecular Sciences,22(4), 1509. https://doi.org/10.3390/ijms22041509
Guzmán, D. C., Mejía, G. B., Vázquez, I. E., García, E.H., del Angel, D. S. & Olguín, H. J. (2005). Effect oftestosterone and steroids homologues on indolaminesand lipid peroxidation in rat brain. The Journal of SteroidBiochemistry and Molecular Biology, 94(4), 369–373.https://doi.org/10.1016/j.jsbmb.2004.11.006
Hammond, J., Le, Q., Goodyer, C., Gelfand, M., Trifiro, M. &LeBlanc, A. (2001). Testosterone-mediated neuroprotectionthrough the androgen receptor in human primary neurons.Journal of Neurochemistry, 77(5), 1319–1326. https://doi.org/10.1046/j.1471-4159.2001.00345.x
Hanchang, W., Semprasert, N., Limjindaporn, T., Yenchitsomanus,P. T. & Kooptiwut, S. (2013). Testosterone protects againstglucotoxicity-induced apoptosis of pancreatic β-cells(INS-1) and male mouse pancreatic islets. Endocrinology,154(11), 4058–4067. https://doi.org/10.1210/en.2013-1351
Harada, N., Katsuki, T., Takahashi, Y., Masuda, T., Yoshinaga,M., Adachi, T., Izawa, T., Kuwamura, M., Nakano, Y.,Yamaji, R. & Inui, H. (2015). Androgen receptor silencesthioredoxin-interacting protein and competitively inhibitsglucocorticoid receptor-mediated apoptosis in pancreaticβ-Cells. Journal of Cellular Biochemistry, 116(6), 998–1006. https://doi.org/10.1002/jcb.25054
Harada, N., Yoda, Y., Yotsumoto, Y., Masuda, T., Takahashi,Y., Katsuki, T., Kai, K., Shiraki, N., Inui, H. & Yamaji,R. (2018). Androgen signaling expands β-cell mass inmale rats and β-cell androgen receptor is degraded underhigh-glucose conditions. American journal of physiology.Endocrinology and Metabolism, 314(3), E274–E286.https://doi.org/10.1152/ajpendo.00211.2017
Kapoor, D., Goodwin, E., Channer, K. S. & Jones, T. H.(2006). Testosterone replacement therapy improvesinsulin resistance, glycaemic control, visceral adiposityand hypercholesterolaemia in hypogonadal men with type2 diabetes. European Journal of Endocrinology, 154(6),899–906. https://doi-org.pbidi.unam.mx:2443/10.1530/eje.1.02166
King A. J. (2012). The use of animal models in diabetes research.British Journal ofPharmacology, 166(3), 877–894. https://doi.org/10.1111/j.1476-5381.2012.01911.x
Kłapcińska, B., Jagsz, S., Sadowska-Krepa, E., Górski, J.,Kempa, K. & Langfort, J. (2008). Effects of castrationand testosterone replacement on the antioxidant defensesystem in rat left ventricle. The Journal of PhysiologicalSciences: JPS, 58(3), 173–177. https://doi.org/10.2170/physiolsci.RP002208
Koukoulis, G. N., Filiponi, M., Gougoura, S., Befani, C.,Liakos, P. & Bargiota, Α. (2022). Testosterone anddihydrotestosterone modulate the redox homeostasis ofendothelium. Cell Biology International, 46(4), 660–670.https://doi.org/10.1002/cbin.11768
Lee, Y. E., Kim, J. W., Lee, E. M., Ahn, Y. B., Song, K. H.,Yoon, K. H., Kim, H. W., Park, C. W., Li, G., Liu, Z. &Ko, S. H. (2012). Chronic resveratrol treatment protectspancreatic islets against oxidative stress in db/db mice.PLOS ONE, 7(11), e50412. https://doi.org/10.1371/journal.pone.0050412
Lenzen S. (2017). Chemistry and biology of reactive specieswith special reference to the antioxidative defence status inpancreatic β-cells. Biochimica et Biophysica Acta. GeneralSubjects, 1861(8), 1929–1942. https://doi.org/10.1016/j.bbagen.2017.05.013
Le May, C., Chu, K., Hu, M., Ortega, C. S., Simpson, E. R.,Korach, K. S., Tsai, M. J. & Mauvais-Jarvis, F. (2006).Estrogens protect pancreatic beta-cells from apoptosisand prevent insulin-deficient diabetes mellitus in mice.Proceedings of the National Academy of Sciences of theUnited States of America, 103(24), 9232–9237. https://doi.org/10.1073/pnas.0602956103
Li, R. J., Qiu, S. D., Wang, H. X., Tian, H., Wang, L. R. & Huo,Y. W. (2008). Androgen receptor: a new player associatedwith apoptosis and proliferation of pancreatic beta-cell intype 1 diabetes mellitus. Apoptosis: an International Journalon Programmed Cell Death, 13(8), 959–971. https://doi.org/10.1007/s10495-008-0230-9
Lin, B., Wang, J., Hong, X., Yan, X., Hwang, D., Cho, J. H.,Yi, D., Utleg, A. G., Fang, X., Schones, D. E., Zhao, K.,Omenn, G. S. & Hood, L. (2009). Integrated expressionprofiling and ChIP-seq analyses of the growth inhibitionresponse program of the androgen receptor. PLOS ONE,4(8), e6589. https://doi.org/10.1371/journal.pone.0006589
Meydan, S., Kus, I., Tas, U., Ogeturk, M., Sancakdar, E.,Dabak, D. O., Zararsız, I. & Sarsılmaz, M. (2010).Effects of testosterone on orchiectomy-induced oxidativedamage in the rat hippocampus. Journal of ChemicalNeuroanatomy, 40(4), 281–285. https://doi.org/10.1016/j.jchemneu.2010.07.006
Mizukami, H., Takahashi, K., Inaba, W., Tsuboi, K., Osonoi,S., Yoshida, T. & Yagihashi, S. (2014). Involvement ofoxidative stress-induced DNA damage, endoplasmicreticulum stress, and autophagy deficits in the decline ofβ-cell mass in Japanese type 2 diabetic patients. DiabetesCare, 37(7), 1966–1974. https://doi.org/10.2337/dc13-2018
Morimoto, S., Fernandez-Mejia, C., Romero-Navarro,G., Morales-Peza, N. & Díaz-Sánchez, V. (2001).Testosterone effect on insulin content, messengerribonucleic acid levels, promoter activity, and secretionin the rat. Endocrinology, 142(4), 1442–1447. https://doi.org/10.1210/endo.142.4.8069
Morimoto, S., Mendoza-Rodríguez, C. A., Hiriart, M., Larrieta,M. E., Vital, P. & Cerbón, M. A. (2005). Protective effectof testosterone on early apoptotic damage induced bystreptozotocin in rat pancreas. The Journal of Endocrinology,187(2), 217–224. https://doi.org/10.1677/joe.1.06357
Navarro, G., Allard, C., Morford, J. J., Xu, W., Liu, S., Molinas,A. J., Butcher, S. M., Fine, N. H., Blandino-Rosano, M.,Sure, V. N., Yu, S., Zhang, R., Münzberg, H., Jacobson,D. A., Katakam, P. V., Hodson, D. J., Bernal-Mizrachi, E.,Zsombok, A. & Mauvais-Jarvis, F. (2018). Androgen excessin pancreatic β cells and neurons predisposes female miceto type 2 diabetes. JCI Insight, 3(12), e98607. https://doi.org/10.1172/jci.insight.98607
Paik, S. G., Michelis, M. A., Kim, Y. T. & Shin, S. (1982).Induction of insulin-dependent diabetes by streptozotocin.Inhibition by estrogens and potentiation by androgens.Diabetes, 31(8 Pt 1), 724–729. https://doi.org/10.2337/diab.31.8.724
Palomar-Morales, M., Morimoto, S., Mendoza-Rodríguez,C. A. & Cerbón, M. A. (2010). The protective effect oftestosterone on streptozotocin-induced apoptosis in betacells is sex specific. Pancreas, 39(2), 193–200. https://doi.org/10.1097/MPA.0b013e3181c156d9
Pang, S. T., Dillner, K., Wu, X., Pousette, A., Norstedt, G.& Flores-Morales, A. (2002). Gene expression profilingof androgen deficiency predicts a pathway of prostateapoptosis that involves genes related to oxidativestress. Endocrinology, 143(12), 4897–4906. https://doi.org/10.1210/en.2002-220327
Parasuraman, S., Raveendran, R. & Kesavan, R. (2010). Bloodsample collection in small laboratory animals. Journal ofPharmacology & Pharmacotherapeutics, 1(2), 87–93.https://doi.org/10.4103/0976-500X.72350
Pousette A. (1976). Demonstration of an androgen receptor inrat pancreas. The Biochemical Journal, 157(1), 229–232.https://doi.org/10.1042/bj1570229
Rao, P. M., Kelly, D. M. & Jones, T. H. (2013). Testosterone andinsulin resistance in the metabolic syndrome and T2DMin men. Nature Reviews. Endocrinology, 9(8), 479–493.https://doi.org/10.1038/nrendo.2013.122
Ritschl, L. M., Fichter, A. M., Häberle, S., von Bomhard, A.,Mitchell, D. A., Wolff, K. D. & Mücke, T. (2015). Ketamine-Xylazine Anesthesia in Rats: Intraperitoneal versusIntravenous Administration Using a Microsurgical FemoralVein Access. Journal of Reconstructive Microsurgery,31(5), 343–347. https://doi.org/10.1055/s-0035-1546291
Sadowska-Krępa, E., Kłapcińska, B., Jagsz, S., Nowara, A.,Szołtysek-Bołdys, I., Chalimoniuk, M., Langfort, J. &Chrapusta, S. J. (2017). High-dose testosterone enanthatesupplementation boosts oxidative stress, but exerts littleeffect on the antioxidant barrier in sedentary adolescent malerat liver. Pharmacological Reports: PR, 69(4), 673–678.https://doi.org/10.1016/j.pharep.2017.02.023
Salazar-García, M. & Corona, J. C. (2021). The use of naturalcompounds as a strategy to counteract oxidative stress inanimal models of diabetes mellitus. International Journal ofMolecular Sciences, 22(13), 7009. https://doi.org/10.3390/ijms22137009
Sasikumar, R., Jyoti Das, A. & Chandra Deka, S. (2021). Invitro cytoprotective activity of cyanidin 3-glucoside extractsfrom Haematocarpus validus pomace on streptozotocininduced oxidative damage in pancreatic β-cells. SaudiJournal of Biological Sciences, 28(9), 5338–5348. https://doi.org/10.1016/j.sjbs.2021.05.065
Sies, H. & Jones, D. P. (2020). Reactive oxygen species (ROS)as pleiotropic physiological signalling agents. Naturereviews. Molecular Cell Biology, 21(7), 363–383. https://doi.org/10.1038/s41580-020-0230-3
Son, S. W., Lee, J. S., Kim, H. G., Kim, D. W., Ahn, Y. C. &Son, C. G. (2016). Testosterone depletion increases thesusceptibility of brain tissue to oxidative damage in arestraint stress mouse model. Journal of Neurochemistry,136(1), 106–117. https://doi.org/10.1111/jnc.13371
Wang, N., Yi, W. J., Tan, L., Zhang, J. H., Xu, J., Chen, Y.,Qin, M., Yu, S., Guan, J. & Zhang, R. (2017). Apigeninattenuates streptozotocin-induced pancreatic β cell damageby its protective effects on cellular antioxidant defense. Invitro Cellular & Developmental Biology. Animal, 53(6),554–563. https://doi.org/10.1007/s11626-017-0135-4
Xu, W., Niu, T., Xu, B., Navarro, G., Schipma, M. J. &Mauvais-Jarvis, F. (2017). Androgen receptor-deficientislet β-cells exhibit alteration in genetic markers ofinsulin secretion and inflammation. A transcriptomeanalysis in the male mouse. Journal of Diabetes and itsComplications, 31(5), 787–795. https://doi.org/10.1016/j.jdiacomp.2017.03.002
Yao, Q. M., Wang, B., An, X. F., Zhang, J. A. & Ding, L.(2018). Testosterone level and risk of type 2 diabetes inmen: a systematic review and meta-analysis. EndocrineConnections, 7(1), 220–231. https://doi.org/10.1530/EC-17-0253
Yaribeygi, H., Sathyapalan, T., Atkin, S. L. & Sahebkar,A. (2020). Molecular Mechanisms Linking OxidativeStress and Diabetes Mellitus. Oxidative Medicineand Cellular Longevity, 2020, 8609213. https://doi.org/10.1155/2020/8609213
Zhang, Y., Mei, H., Shan, W., Shi, L., Chang, X., Zhu, Y.,Chen, F. & Han, X. (2016). Lentinan protects pancreaticβ cells from STZ-induced damage. Journal of Cellularand Molecular Medicine, 20(10), 1803–1812. https://doi.org/10.1111/jcmm.12865
Zatroch, K. K., Knight, C. G., Reimer, J. N. & Pang, D. S.(2017). Refinement of intraperitoneal injection of sodiumpentobarbital for euthanasia in laboratory rats (Rattusnorvegicus). BMC Veterinary Research, 13(1), 60. https://doi.org/10.1186/s12917-017-0982-y