2023, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2023; 26 (1)
Phytopathogens control with pepper and maize plant biomass extracts
Jiménez-Ortega LA, Valdez-Baro O, Heredia-Bátiz JM, García-Estrada RS, Basilio HJ
Language: Spanish
References: 63
Page: 1-11
PDF size: 359.87 Kb.
ABSTRACT
Mexico is one of the main producers of pepper and maize worldwide. Activity from which significant amounts of biomass and
agricultural by-products originate must be valued to mitigate damage to the environment and generate added value. This study
aimed to value the agricultural biomass of chili and maize, to obtain phytochemicals with antibacterial and antifungal capacity
against phytopathogens of economic importance for agriculture, using extraction methodologies based on green chemistry. For the
extraction of phytochemicals, two types of Deep Eutectic Solvents (DES) were used, and a lactic fermentation with
Lactobacillus
plantarum. The extracts were evaluated
in vitro and
in vivo against
Clavibacter michiganensis subsp.
michiganensis, Xanthomonas
vesicatoria, Ralstonia solanacearum, Fusarium oxysporum f. sp. licopersici, Colletotrichum gloeosporioides, Botrytis cinerea and
Alternaria solani. The
in vitro results showed that the extracts obtained with the DES were effective against bacteria, unlike the
in
vivo tests that inhibited the growth of fungi. The potential of biomass extracts against phytopathogenic microorganisms suggests
its usefulness as an agricultural biocontrol tool, by ensuring sustainability with the use of DES that, in addition to being efficient,
biodegradable, and innocuous, achieved the extraction of antimicrobial phytochemicals.
REFERENCES
Abirami, S., Priyalakshmi, M., Soundariya, A., Samrot, A. V.,Saigeetha, S., Emilin, R. R., Dhiva, S. & Inbathamizh, L.(2021). Antimicrobial activity, antiproliferative activity,amylase inhibitory activity and phytochemical analysisof ethanol extract of corn (Zea mays L.) silk. Green andSustainable Chemistry, 4, 100089. https://doi.org/10.1016/j.crgsc.2021.100089
Acero-Ortega, C., Dorantes-Alvarez, L., Hernández-Sánchez,H., Gutiérrez-López, G., Aparicio, G. & Jaramillo-Flores,M. E. (2005). Evaluation of Phenylpropanoids in TenCapsicum annuum L. Varieties and Their Inhibitory Effectson Listeria monocytogenes Murray, Webb and Swann ScottA. Food Science and Technology International, 11, 5-10.https://doi.org/10.1177/1082013205050902
Adepoju, A. O., Omotoso, I. O., Femi-Adepoju, A. G. & Karim,A. B. (2020). Comparative studies on the antimicrobial,chemical and biochemical contents of the foliar extractsof Capsicum fructescens L. varieties. African Journal ofBiotechnology, 19(12), 836-845. https://doi.org/10.5897/AJB2020.17258
Anaya-Esparza, L. M., Mora, Z. V., Vázquez-Paulino, O.,Ascencio, F. & Villarruel-López, A. (2021). Bell Peppers(Capsicum annum L.) Losses and Wastes: Source for Foodand Pharmaceutical Applications. Molecules, 26, 5341.https://doi.org/10.3390/molecules26175341
Arena, M. P., Capozzi, V., Russo, P., Drider, D., Spano,G. & Fiocco, D. (2018). Immunobiosis and probiosis:antimicrobial activity of lactic acid bacteria with a focuson their antiviral and antifungal properties. AppliedMicrobiology and Biotechnology, 102, 9949-9958. https://doi.org/10.1007/s00253-018-9403-9
Barrajón-Catalán, E., Álvarez-Martínez, F. J., Borrás, F., Pérez,D., Herrero, N., Ruiz, J. J. & Micol, V. (2020). Metabolomicanalysis of the effects of a commercial complex biostimulanton pepper crops. Food Chemistry, 310, 125818. https://doi.org/10.1016/j.foodchem.2019.125818
Bucić-Kojić, A., Šelo, G., Zelić, B., Planinić, M. & Tišma, M.(2017). Recovery of Phenolic Acid and Enzyme Productionfrom Corn Silage Biologically Treated by Trametesversicolor. Applied Biochemistry and Biotechnology, 181,948-960. https://doi.org/10.1007/s12010-016-2261-y
Carvalho Lemos, V., Reimer, J. J. & Wormit, A. (2019). Color forLife: Biosynthesis and Distribution of Phenolic Compoundsin Pepper (Capsicum annuum). Agriculture, 9, 81. https://doi.org/10.3390/agriculture9040081
Cespedes, C. L., Alarcon, J., Aqueveque, P. M., Lobo, T.,Becerra, J., Balbontin, C., Avila, J. G., Kubo, I. & Seigler,D. S. (2015). New environmentally-friendly antimicrobialsand biocides from Andean and Mexican biodiversity.Environmental Research, 142, 549-562. https://doi.org/10.1016/j.envres.2015.08.004
Chen, L. & Kang, Y. H. (2013). Anti-inflammatory andantioxidant activities of red pepper (Capsicum annuum L.)stalk extracts: Comparison of pericarp and placenta extracts.Journal of Functional Foods, 5, 1724-1731. https://doi.org/10.1016/j.jff.2013.07.018
da Silva Pereira, L., do Nascimento, V. V., de Fátima, F. R.S., Rodrigues, R., Fernandes, K. V. S., de Oliveira, C.A., Vasconcelos, I. M., dos Santos, B. C., Sudré, C. P.,Zottich, U. & Gomes, V. M. (2018). Characterizationof Capsicum annuum L. leaf and root antimicrobialpeptides: antimicrobial activity against phytopathogenicmicroorganisms. Acta Physiologiae Plantarum, 40, 107.https://doi.org/10.1007/s11738-018-2685-9
Dai, Y., van Spronsen, J., Witkamp, G. J., Verpoorte, R. &Choi, Y. H. (2013). Natural deep eutectic solvents as newpotential media for green technology. Analytica ChimicaActa, 766, 61-68. https://doi.org/10.1016/j.aca.2012.12.019
Đorđević, T., Sarić, M. & Gajić, U. J. (2019). PhenolicCompounds and Allelopathic Potential of Fermented andUnfermented Wheat and Corn Straw Extracts. Chemistryand Biodiversity, 16, e1800420. https://doi.org/10.1002/cbdv.201800420
FAO, (2018). Los contaminantes agrícolas: una grave amenazapara el agua del planeta. Recuperado de https://www.fao.org/news/story/es/item/1141818/icode/#:~:text=La%20agricultura%20moderna%20es%20responsable,de%20millones%20de%20d%C3%B3lares%20EEUU.
FAO, (2019). La FAO presenta 2020 como Año Internacionalde la Sanidad Vegetal. Recuperado de https://www.fao.org/documents/card/es/c/CA5188ES/
FAO, (2021). FAOSTAT. Recuperado de https://www.fao.org/faostat/es/
Games, P. D., Koscky-Paier, C. R., Almeida-Souza, H. O.,Barbosa, M. O., Antunes, P. W. P., Carrijo, L. C., Pereira,P. R. G. & Baracat-Pereira, M. C. (2013). In vitro antibacterialand anti-fungal activities of hydrophilic plantdefence compounds obtained from the leaves of bell pepper(Capsicum annuum L.). The Journal of HorticulturalScience and Biotechnology, 88, 551-558. https://doi.org/10.1080/14620316.2013.11513005
Garadew, M., Lin, F., Song, B., DeWinter, T. M., Jackson,J. E., Saffron, C. M., Ho, L. C. & Anastas, P. T. (2020).Greener Routes to Biomass Waste Valorization: LigninTransformation Through Electrocatalysis for RenewableChemicals and Fuels Production. ChemSusChem, 13, 4214-4237. https://doi.org/10.1002/cssc.202000987
Gayathri, N., Gopalakrishnan, M. & Sekar, T. (2016).Phytochemical screening and antimicrobial activity ofCapsicum chinense Jacq. International Journal of Advances inPharmaceutics, 5(1), 2320-4923. https://doi.org/10.7439/ijap
Guan, Y. C., Chen, S. S., Huei, L. T., Ping, Y. C. & Tasang, C.W. (2020). Valorization of biomass from plant microbialfuel cells into levulinic acid by using liquid/solid acidsand green solvents. Journal of Cleaner Production, 260.,121097. https://doi.org/10.1016/j.jclepro.2020.121097
Gullón, P., Gullón, B., Romaní, A., Rocchetti, G. & Lorenzo, J. M.(2020). Smart advanced solvents for bioactive compoundsrecovery from agri-food by-products: A review. Trends inFood Science and Technology, 101, 182-197. https://doi.org/10.1016/j.tifs.2020.05.007
Guo, B., Zhang, Y., Li, S., Lai, T., Yang, L., Chen, J. &Ding, W. (2016). Extract from Maize (Zea mays L.):Antibacterial Activity of DIMBOA and Its Derivativesagainst Ralstonia solanacearum. Molecules, 21, 1397.https://doi.org/10.3390/molecules21101397
Guo, Y., Li, Y., Li, Z., Jiang, L., Cao, X., Gao, W., Wang,J., Luo, D. & Chen, F. (2021). Deep eutectic solventhomogenatebased microwave-assisted hydrodistillationof essential oil from Litsea cubeba (Lour.) Pers. fruitsand its chemical composition and biological activity.Journal of Chromatography A, 1646, 462089. https://doi.org/10.1016/j.chroma.2021.462089
Iorizzi, M., Lanzotti, V., Ranalli, G., De Marino, S. & Zollo,F. (2002). Antimicrobial Furostanol Saponins from theSeeds of Capsicum annuum L. Var. acuminatum. Journalof Agricultural and Food Chemistry, 50, 4310-4316. https://doi.org/10.1021/jf0116911
Ji, Q., Yu, X., Yagoub, A., Chen, L. & Zhou, C. (2020). Efficientremoval of lignin from vegetable wastes by ultrasonic andmicrowave-assisted treatment with ternary deep eutecticsolvent. Industrial Crops and Products, 149, 112357. https://doi.org/10.1016/j.indcrop.2020.112357
Kalhor, P. & Ghandi, K. (2019). Deep Eutectic Solvents forPretreatment, Extraction, and Catalysis of Biomass andFood Waste. Molecules, 24, 4012. https://doi.org/10.3390/molecules24224012
Kalinoski, R. M., Li, W., Mobley, J. K., Asare, S. O., Dorrani,M., Lynn, B. C., Chen, X. & Shi, J. (2020). AntimicrobialProperties of Corn Stover Lignin Fractions Derived fromCatalytic Transfer Hydrogenolysis in Supercritical Ethanolwith a Ru/C Catalyst. ACS Sustainable Chemistry andEngineering, 8, 18455-18467. https://doi.org/10.1021/acssuschemeng.0c05812
Karalexi, M. A., Tagkas, C. F., Markozannes, G., Tseretopoulou,X., Hernández, A. F., Schüz, J., Halldorsson, T. I.,Psaltopoulou, T., Petridou, E. T., Tzoulaki, I. & Ntzani, E.E. (2021). Exposure to pesticides and childhood leukemiarisk: A systematic review and meta-analysis. EnvironmentalPollution, 285, 117376. https://doi.org/10.1016/j.envpol.2021.117376
Lengai, G. M. W., Muthomi, J. W. & Mbega, E. R. (2020).Phytochemical activity and role of botanical pesticidesin pest management for sustainable agricultural cropproduction. Scientific African, 7, e00239. https://doi.org/10.1016/j.sciaf.2019.e00239
Li, C., Huang, C., Zhao, Y., Zheng, C., Su, H., Zhang, L., Luo,W., Zhao, H., Wang, S. & Huang, L. J. (2021). Effect ofCholine-Based Deep Eutectic Solvent Pretreatment on theStructure of Cellulose and Lignin in Bagasse. Processes,9, 384. https://doi.org/10.3390/pr9020384
Lucero, B. & Muñoz-Quezada, M. T. (2021). Neurobehavioral,Neuromotor, and Neurocognitive Effects in AgriculturalWorkers and Their Children Exposed to PyrethroidPesticides: A Review [Systematic Review]. Frontiers inHuman Neuroscience, 15, 648171. https://doi.org/10.3389/fnhum.2021.648171
Nwachukwu, U., George-Okafor, U., Ozoani, U. & Ojiagu, N.(2019). Assessment of probiotic potentials of Lactobacillusplantarum CS and Micrococcus luteus CS from fermentedmilled corn-soybean waste-meal. (2019). Scientific African,6, e00183. https://doi.org/10.1016/j.sciaf.2019.e00183
Maggi, F., Tang, F. H. M., Black, A. J., Marks, G. B. &McBratney, A. (2021). The pesticide health risk index -An application to the world’s countries. Science of TheTotal Environment, 801, 149731. https://doi.org/10.1016/j.scitotenv.2021.149731
Martínez-Fraca, J., de la Torre-Hernández, M. E., Meshoulam-Alamilla, M. & Plasencia, J. (2022). In Search of ResistanceAgainst Fusarium Ear Rot: Ferulic Acid Contents in MaizePericarp Are Associated With Antifungal Activity andInhibition of Fumonisin Production [Original Research].Frontiers in Plant Science, 13, 852257. https://doi.org/10.3389/fpls.2022.852257
Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M. &de la Canal, L. (2017). Chlorogenic acid is a fungicide activeagainst phytopathogenic fungi. Pesticide Biochemistryand Physiology, 140, 30-35. https://doi.org/10.1016/j.pestbp.2017.05.012
Matich, E. K., Laryea, J. A., Seely, K. A., Stahr, S., Su, L. J. &Hsu, P. C. (2021). Association between pesticide exposureand colorectal cancer risk and incidence: A systematicreview. Ecotoxicology and Environmental Safety, 219,112327. https://doi.org/10.1016/j.ecoenv.2021.112327
Misan, A. Nadpal, J., Stupar, A., Pojic, M., Mandic, A.,Verpoorte, R. & Hae, C. Y. (2020). The perspectives ofnatural deep eutectic solvents in agri-food sector. CriticalReviews in Food Science And Nutrition, 60, 2564-2592.https://doi.org/10.1080/10408398.2019.1650717
Moebus, S. & Boedeker, W. (2021). Case Fatality as an Indicatorfor the Human Toxicity of Pesticides—A SystematicScoping Review on the Availability and Variability ofSeverity Indicators of Pesticide Poisoning. InternationalJournal of Environmental Research and Public Health, 18,8307. https://doi.org/10.3390/ijerph18168307
Mohamed, G. A., Ibrahim, S. R. M., Abdelkader, M. S. A.,Al-Musayeib, N. M., Ghoneim, M. & Ross, S. A. (2014).Zeaoxazolinone, a new antifungal agent from roots.Medicinal Chemistry Research, 23, 4627-4630. https://doi.org/10.1007/s00044-014-1026-9
Morales, J., Mendoza, L. & Cotoras, M. (2017). Alterationof oxidative phosphorylation as a possible mechanism ofthe antifungal action of p-coumaric acid against Botrytiscinerea. Applied Microbiology International, 123, 969-976.https://doi.org/10.1111/jam.13540
Mouden, S., Klinkhamer, P. G. L., Choi, Y. H. & Leiss, K. A.(2017). Towards eco-friendly crop protection: natural deepeutectic solvents and defensive secondary metabolites.Phytochemistry Reviews, 16, 935-951. https://doi.org/10.1007/s11101-017-9502-8
Osaili, T. M., Al Sallagi, M. S., Dhanasekaran, D. K., BaniOdeh, W. A. M., Al Ali, H. J., Al Ali, A. A. S. A., Radwan,H., Obaid, R. S. & Holley, R. (2022). Pesticide residues infresh vegetables imported into the United Arab Emirates.Food Control, 133, 108663. https://doi.org/10.1016/j.foodcont.2021.108663
Pane, C., Fratianni, F., Parisi, M., Nazzaro, F. & Zaccardelli,M. (2016). Control of Alternaria post-harvest infections oncherry tomato fruits by wild pepper phenolic-rich extracts.Crop Protection, 84, 81-87. https://doi.org/10.1016/j.cropro.2016.02.015
Pereira, P. C. G., Parente, C. E. T., Carvalho, G. O., Torres, J.P. M., Meire, R. O., Dorneles, P. R. & Malm, O. (2021).A review on pesticides in flower production: A push toreduce human exposure and environmental contamination.Environmental Pollution, 289, 117817. https://doi.org/10.1016/j.envpol.2021.117817
Pontonio, E., Dingeo, C., Gobbetti, M. & Rizzello, C. G.(2019). Maize Milling By-Products: From Food Wastesto Functional Ingredients Through Lactic Acid BacteriaFermentation. Frontiers in Microbiology, 10, 1-14.https://doi.org/10.3389/fmicb.2019.00561
Provan, G. J., Scobbie, L. & Chesson, A. (1994). Determinationof phenolic acids in plant cell walls by microwave digestion.Journal of the Science of Food and Agriculture, 64, 63-65.https://doi.org/10.1002/jsfa.2740640110
Purushothaman, A. & Pemiah, B. (2014). Ultra high performanceliquid chromatography- ultraviolet-electrospray ionizationmicroTOF-Q II analysis of flavonoid fractions fromJatropha tanjorensis. Pharmacognosy Magazine, 10, 472-479. https://doi.org/10.4103/0973-1296.139776
Rodríguez-Juan, E., López, S., Abia, R. J. G., Muriana, F.,Fernández-Bolaños, J. & García-Borrego, A. (2021).Antimicrobial activity on phytopathogenic bacteria andyeast, cytotoxicity and solubilizing capacity of deep eutecticsolvents. Journal of Molecular Liquids, 337, 116343. https://doi.org/10.1016/j.molliq.2021.116343
Rouf Shah, T., Prasad, K. & Kumar, P. (2016). Maize—Apotential source of human nutrition and health: A review.Cogent Food and Agriculture, 2, 1166995. https://doi.org/10.1080/23311932.2016.1166995
Saha, A. & Basak, B. B. (2020). Scope of value addition andutilization of residual biomass from medicinal and aromaticplants. Industrial Crops and Products, 145, 111979. https://doi.org/10.1016/j.indcrop.2019.111979
Scaffaro, R., Maio, A. & Nostro, A. (2020). Poly(lactic acid)/carvacrol-based materials: preparation, physicochemicalproperties, and antimicrobial activity. Applied Microbiologyand Biotechnology, 104, 1823-1835. https://doi.org/10.1007/s00253-019-10337-9
Sheldon, R.A. Green chemistry, catalysis and valorization ofwaste biomass. Journal of Molecular Catalysis A: Chemical,422, 3-12. https://doi.org/10.1016/j.molcata.2016.01.013
Sillero, L., Prado, R., Welton, T. & Labidi, J. (2021). Extractionof flavonoid compounds from bark using sustainable deepeutectic solvents. Sustainable Chemistry and Pharmacy,24, 100544. https://doi.org/10.1016/j.scp.2021.100544
Siyuan, S., Tong, L. & Liu, R. (2018). Corn phytochemicals andtheir health benefits. Food Science and Human Wellness,7, 185-195. https://doi.org/10.1016/j.fshw.2018.09.003
Socas-Rodríguez, B., Torres-Cornejo, M. V., Álvarez-Rivera, G.& Mendiola, J. A. (2021). Deep Eutectic Solvents for theExtraction of Bioactive Compounds from Natural Sourcesand Agricultural By-Products. Applied Sciences, 11, 4897.https://doi.org/10.3390/app11114897
Suteu, D., Rusu, L., Zaharia, C., Badeanu, M. & Daraban, G.M. (2020). Challenge of Utilization Vegetal Extracts asNatural Plant Protection Products. Applied Sciences, 10,8913. https://doi.org/10.3390/app10248913
Thakur, R., Gupta, V., Ghosh, T. & Das, A. B. (2022). Effectof anthocyanin-natural deep eutectic solvent (lactic acid/fructuose) on mechanical, thermal, barrier, and pHsenstitive properties of poluvinyl alcohol based ediblefilms. Food Packaging and Shelf Life, 33, 100914. https://doi.org/10.1016/j.fpsl.2022.100914
Torres-Valenzuela, L. S., Ballesteros-Gómez, A. & Rubio,S. (2020). Green Solvents for the Extraction of HighAdded-Value Compounds from Agri-food Waste. FoodEngineering Reviews, 12, 83-100. https://doi.org/10.1007/s12393-019-09206-y
UN, (2020). El impacto de las quemas agrícolas: un problemade calidad del aire. Recuperado de https://www.unep.org/es/noticias-y-reportajes/reportajes/el-impacto-de-las-quemasagricolas-un-problema-de-calidad-del-aire
Utami, T. S., Tibrizi, A., Sungkar, M., Tenggoro, G., Arbianti,R. & Hermansyah, H. (2020). Effect of papaya gum ratioper solvent volume and sonication time in bio-insecticideproduction using NaDES solvents with ultrasonic waves.AIP Conference Proceedings, 2255, 040019. https://doi.org/10.1063/5.0013696
Vazquez-Olivo, G., López-Martínez, L. X., Contreras-Angulo,L. & Heredia, J. B. (2019). Antioxidant Capacity of Ligninand Phenolic Compounds from Corn Stover. Waste andBiomass Valorization, 10, 95–102. https://doi.org/10.1007/s12649-017-0028-5
Whitney, N. J. & Mortimore, C. G. (1959). An AntifungalSubstance in the Corn Plant and its Effect on Growth ofTwo Stalk-rotting Fungi. Nature, 183, 341-341. https://doi.org/10.1038/183341a0
Yaashikaa, P. R., Senthil, K. P. & Varjani, S. (2022). Valorizationof agro-industrial wastes for biorefinery process and circularbioeconomy: A critical review. Bioresource Technology, 343,126126. https://doi.org/10.1016/j.biortech.2021.126126