2024, Number 3
<< Back Next >>
Ortho-tips 2024; 20 (3)
Osseointegration of the autologous and heterologous graft of A3 and A4 thoracolumbar burst fractures
Aragón DR, León OHA, Rivera SG, Pavón FJ, Leyva MEE
Language: Spanish
References: 32
Page: 156-161
PDF size: 144.56 Kb.
ABSTRACT
Introduction: bone graft is the replacement for damaged or absent bone, which are used in spinal arthrodesis. Grafts have the capacity to be osteoinductive, osteogenic and osteoconductive.
Objective: to determine the degree of osseointegration of the autologous and heterologous graft, when performing an arthrodesis of the thoracolumbar segment in A3 and A4 fractures.
Material and methods: an observational, descriptive, retrospective and cross-sectional study was carried out, the patients were evaluated with imaging studies of the thoracolumbar segment with bone graft placement and the degree of consolidation of the autologous and heterologous graft was determined.
Results: grade I consolidation at one month was 23 patients with autologous graft and 24 with heterologous; at three months grade II was 20 patients with autologous and heterologous graft, respectively; at six months grade III consolidation was 13 patients with autologous graft and 11 patients with heterologous and grade IV was 26 patients with autologous graft and 28 with heterologous graft.
Conclusion: the literature reviewed showed that there is no significant difference in the osseointegration of autologous and heterologous grafts at one-month, three-month and six-month follow-up.
REFERENCES
Clough BH, McNeill EP, Palmer D, Krause U, Bartosh TJ, Chaput CD, et al. An allograft generated from adult stem cells and their secreted products efficiently fuses vertebrae in immunocompromised athymic rats and inhibits local immune responses. Spine J. 2017; 17 (3): 418-430.
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017; 2 (4): 224-247.
Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev. 2012; 64 (12): 1063-1077.
Yang JH, Glaeser JD, Kanim LEA, Battles CY, Bondre S, Bae HW. Bone grafts and bone graft substitutes. In: Handbook of Spine Technology. Cham: Springer International Publishing; 2020. 1-77.
Gilbert SF. Developmental Biology. 6th edition. Sunderland (MA): Sinauer Associates; 2000.
Kadam A, Millhouse PW, Kepler CK, Radcliff KE, Fehlings MG, Janssen ME, et al. Bone substitutes and expanders in Spine Surgery: A review of their fusion efficacies. Int J Spine Surg. 2016; 10: 33.
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014; 25 (10): 2445-2461.
Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and bioactive agents in spinal fusion. Tissue Eng Part B Rev. 2017; 23 (6): 540-551.
Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011; 42 Suppl 2: S16-21.
D'Souza M, Macdonald NA, Gendreau JL, Duddleston PJ, Feng AY, Ho AL. Graft materials and biologics for spinal interbody fusion. Biomedicines. 2019; 7 (4): 75.
Morris MT, Tarpada SP, Cho W. Bone graft materials for posterolateral fusion made simple: a systematic review. Eur Spine J. 2018; 27 (8): 1856-1867.
Egol KA, Nauth A, Lee M, Pape HC, Watson JT, Borrelli J Jr. Bone Grafting: Sourcing, Timing, Strategies, and Alternatives. J Orthop Trauma. 2015; 29 Suppl 12: S10-14. doi: 10.1097/BOT.0000000000000460.
2008 Bone Grafts and Bone Substitutes - orthopedic network news. yumpu.com. Available in: https://www.yumpu.com/en/document/read/6328775/2008-bone-grafts-and-bone-substitutes-orthopedic-network-news
Urist MR, Iwata H, Ceccotti PL, Dorfman RL, Boyd SD, McDowell RM, et al. Bone morphogenesis in implants of insoluble bone gelatin. Proc Natl Acad Sci USA. 1973; 70 (12): 3511-3515.
Urist MR, Mikulski A, Lietze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci USA. 1979; 76 (4): 1828-1832.
Galia RC, Moreira FL. The biology of bone grafts. In: Recent Advances in Arthroplasty. InTech; 2012.
Goldberg VM, Akhavan S. Biology of bone grafts. En: Bone Regeneration and Repair. Totowa, NJ: Humana Press; 2005. p. 57-65.
Pape HC, Evans A, Kobbe P. Autologous bone graft: properties and techniques. J Orthop Trauma. 2010; 24 Suppl 1: S36-40.
Vaz K, Verma K, Protopsaltis T, Schwab F, Lonner B, Errico T. Bone grafting options for lumbar spine surgery: a review examining clinical efficacy and complications. SAS J. 2010; 4 (3): 75-86.
Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011; 42 Suppl 2: S3-15.
Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F. The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976). 2005; 30 (18): 2024-2029.
Fritzell P, Hagg O, Wessberg P, Nordwall A; Swedish Lumbar Spine Study Group. Chronic low back pain and fusion: a comparison of three surgical techniques: a prospective multicenter randomized study from the Swedish lumbar spine study group. Spine (Phila Pa 1976). 2002; 27 (11): 1131-1141.
Lee SC, Chen JF, Wu CT, Lee ST. In situ local autograft for instrumented lower lumbar or lumbosacral posterolateral fusion. J Clin Neurosci. 2009; 16 (1): 37-43.
Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001; 10 Suppl 2 (Suppl 2): S96-101.
Cohen JD, Kanim LE, Tronits AJ, Bae HW. Allografts and spinal fusion. Int J Spine Surg. 2021; 15 (s1): 68-93. doi: 10.14444/8056.
Gao Y, Li J, Cui H, Zhang F, Sun Y, Li Z, et al. Comparison of intervertebral fusion rates of different bone graft materials in extreme lateral interbody fusion. Medicine (Baltimore). 2019; 98 (44): e17685. doi: 10.1097/MD.0000000000017685.
Lo WC, Tsai LW, Yang YS, Chan RWY. Understanding the future prospects of synergizing minimally invasive transforaminal lumbar interbody fusion surgery with ceramics and regenerative cellular therapies. Int J Mol Sci. 2021; 22 (7): 3638. doi: 10.3390/ijms22073638.
Musante DB, Firtha ME, Atkinson BL, Hahn R, Ryaby JT, Linovitz RJ. Clinical evaluation of an allogeneic bone matrix containing viable osteogenic cells in patients undergoing one- and two-level posterolateral lumbar arthrodesis with decompressive laminectomy. J Orthop Surg Res. 2016; 11 (1): 63. doi: 10.1186/s13018-016-0392-z.
Kato S, Terada N, Niwa O, Yamada M. Factors Affecting incomplete L5/S posterior lumbar interbody fusion, including spinopelvic sagittal parameters. Asian Spine J. 2022; 16 (4): 526-533.
Cruz A, Ropper AE, Xu DS, Bohl M, Reece EM, Winocour SJ, et al. Failure in lumbar spinal fusion and current management modalities. Semin Plast Surg. 2021; 35 (1): 54-62.
Ohtori S, Suzuki M, Koshi T, Takaso M, Yamashita M, Yamauchi K, et al. Single-level instrumented posterolateral fusion of the lumbar spine with a local bone graft versus an iliac crest bone graft: a prospective, randomized study with a 2-year follow-up. Eur Spine J. 2011; 20 (4): 635-639. doi: 10.1007/s00586-010-1656-7.
Reisener MJ, Pumberger M, Shue J, Girardi FP, Hughes AP. Trends in lumbar spinal fusion-a literature review. J Spine Surg. 2020; 6 (4): 752-761. doi: 10.21037/jss-20-492.