2022, Number 2
<< Back Next >>
Medisur 2022; 20 (2)
Importance of image processing in radiotherapy from the perspective of risk analysis
Torres VA, Alfonso LR, Rivero OJJ
Language: Spanish
References: 13
Page: 232-242
PDF size: 625.32 Kb.
ABSTRACT
Background:
image processing is the key in planning external beam radiotherapy treatments. In its execution, human errors and equipment failures can occur, which lead, among other effects, to erroneous interpretations of diagnostic images, target contouring errors, overdose of healthy tissues or underdose of tumor tissues, which means putting patients at risk patients subjected to these practices.
Objective:
to characterize the risks associated with technological and human factors related to image processing that can affect patients undergoing radiotherapy treatments with external beams.
Methods:
intensity modulated radiotherapy was used as the basis of the study. To characterize the initiators and defense measures related to this processing, risk models were used based on analysis of failure modes and effects and the risk matrix of the reference practice, which were processed with the SECURE-MR-FMEA software.
Results:
the sensitivity analyzes on the intensity-modulated radiotherapy models showed the effects on the risk of failures associated with image processing.
Conclusions:
the importance of applying risk analysis in image processing to increase patient safety during external beam radiotherapy treatments was confirmed.
REFERENCES
Klein E, Hanley J, Bayouth J, Yin F, Simon W, Dresser S, et al. Task Group 142 QA of Medical Accelerators. Med Phys. 2009;36(9):4198-4212.
Manterola A, Romero P, Asín G, Rico M, Sola A, Vila MT. Aplicación clínica de la radioterapia de intensidad modulada. Anales Sis San Navarra. 2009;32(2):21-30.
Segedin B, Petric P. Uncertainties in target volume delineation in radiotherapy- are they relevant and what can we do about them? Radiol Oncol. 2016;50(3):254-8.
Contreras J, Herruzo I. Radioterapia conformada en tres dimensiones con intensidad modulada (IMRT). Nuevas estrategias en tumores de cabeza y cuello. Oncología. 2004; 27(1):16-8.
Organismo Internacional de Energía Atómica. Aplicación del método de la matriz de riesgo a la radioterapia. IAEA-TECDOC 1685 Series[Internet]. Viena: OIEA; 2012 [citado 07/12/2021]. Disponible en: Disponible en: https://www.foroiberam.org/documents/193375/e1d00423-9958-4da0-b70b-4e48d77c9b66 5.
Torres Valle A, Rivero Oliva J, Montes de Oca J, Martí Villarreal O, Gutiérrez Navaro J. Monitoreo dinámico de riesgo empleando matriz de riesgo en prácticas médicas con radiaciones ionizantes. Nucleus. 2016;59:29-35.
Saiful Huq M, Fraass B, Dunscombe PB, Gibbons JP. The report of Task Group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43(7):4209-53.
Perera Pintado A, Torres Aroche LA, Vergara Gil A, Batista Cuéllar JF, Prats Capote A. SPECT/CT: principales aplicaciones en la medicina nuclear. Nucleus. 2017;62:2-7.
Boon IA, Yong T, Boon Ch. Assessing the Role of Artificial Intelligence (AI) in Clinical Oncology: Utility of Machine Learning in Radiotherapy Target Volume Delineation. Medicines (Basel). 2018;5(4):131.
Pallardy A, Rousseau C, Labbe C, Liberge R, Bodet-Millen C, Kraere Bodere F, et al. Incidental findings suggestive of COVID-19 in asymptomatic cancer patients undergoing 18F-FDG PET/CT in a low prevalence region. Eur J Nucl Med Mol Imaging. 2020;48:1-6.
Qin C, Liu F, Yen TC, Lan X. 18F-FDG PET/CT findings of COVID-19: a series of four highly suspected cases. Eur J Nucl Med Mol Imaging. 2020;47(5):1281-6.
Ford E, Evans S. Incident learning in radiation oncology: A review. Med Phys. 2018;45(5):e100-e19.
Torres Valle A, Amador Balbona ZH, Alfonso Laguardia R, Elías Hardi LE. SECURE-MR-FMEA código cubano para análisis integral de riesgo de prácticas con radiaciones ionizantes. Nucleus. 2021;69:44-8.