2024, Number 1
<< Back Next >>
Med Crit 2024; 38 (1)
Effect of CO2 on mortality in patients with ARDS in COVID-19
González AAA, Sánchez DJS, Peniche MKG, Suárez RAA, Reyes RJM, Calyeca SMV
Language: Spanish
References: 32
Page: 20-26
PDF size: 249.85 Kb.
ABSTRACT
Introduction: severe SARS-CoV-2 pneumonia (severe acute respiratory syndrome coronavirus 2) increased the incidence of ARDS (acute respiratory distress syndrome). Protective ventilation reduces mortality in patients with ARDS; such a ventilatory strategy based on the use of low tidal volume could cause hypercapnia. CO
2 (carbon dioxide) alterations are as important as oxygenation alterations in ARDS.
Objective: to evaluate the effect of CO
2 on mortality in patients with ARDS in COVID-19 with invasive mechanical ventilation (IMV).
Material and methods: cohort, retrospective, observational, longitudinal study. It was carried out in the intensive care unit (ICU) between June 1, 2020 and December 31, 2022. Non-intervention study.
Results: 115 patients were included, 61.7% men. They were classified into 3 groups according to the PaCO
2 value upon admission to the ICU: group 1 (hypocapnia): PaCO
2 < 35 mmHg, group 2 (normocapnia): PaCO
2 35-45 mmHg, group 3 (hypercapnia): PaCO
2 > 45 mmHg. Overall mortality was 53%. Group 1 presented OR 0.640 (95% CI 0.181-2.265) p = 0.488, group 2 OR1.66 (95% CI 0.673-4.130) p = 0.270 and group 3 OR 0.992 (95% CI 0.396-2.489) p = 0.98, Other variables such as ventilatory efficiency (VE) and respiratory rate (RR) presented an inverse relationship to mortality with a value of 1.4 and 24 respectively.
Conclusion: PaCO
2 is not a risk factor to predict mortality in patients with ARDS secondary to COVID-19 with invasive mechanical ventilation. Other variables such as ventilatory efficiency and respiratory rate are prognostic measurements in our population.
REFERENCES
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-943. doi: 10.1001/jamainternmed.2020.0994.
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3.
Petrucci N, De Feo C. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev. 2013;2013(2):CD003844. doi:10.1002/14651858.CD003844.
Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-1308. doi: 10.1056/NEJM200005043421801.
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747-55. doi: 10.1056/NEJMsa1410639.
Sinha P, Calfee CS, Beitler JR, et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2019;199(3):333-341. doi: 10.1164/rccm.201804-0692OC.
Repessé X, Vieillard-Baron A. Hypercapnia during acute respiratory distress syndrome: the tree that hides the forest! J Thorac Dis. 2017;9(6):1420-1425. doi: 10.21037/jtd.2017.05.69.
Nin N, Muriel A, Peñuelas O, Brochard L, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. 2017;43(2):200-208. doi: 10.1007/s00134-016-4611-1.
Yang X, Cai S, Luo Y, et al. Extracorporeal membrane oxygenation for coronavirus disease 2019-induced acute respiratory distress syndrome: a multicenter descriptive study. Crit Care Med. 2020;48(9):1289-1295. doi: 10.1097/CCM.0000000000004447.
Ospina-Tascón GA, Bautista DF, Madriñán HJ, et al. Microcirculatory dysfunction and dead-space ventilation in early ARDS: a hypothesis-generating observational study. Ann Intensive Care. 2020;10(1):35. doi: 10.1186/s13613-020-00651-1.
Morales Quinteros L, Bringué Roque J, Kaufman D, Artigas Raventós A. Importance of carbon dioxide in the critical patient: Implications at the cellular and clinical levels. Med Intensiva (Engl Ed). 2019;43(4):234-242. doi: 10.1016/j.medin.2018.01.005.
Giraud R, Banfi C, Assouline B, De Charrière A, Cecconi M, Bendjelid K. The use of extracorporeal CO2 removal in acute respiratory failure. Ann Intensive Care. 2021;11(1):43. doi: 10.1186/s13613-021-00824-6.
Gounidis A, Evangeliou AP, Kloura C, et al. Baseline hypocapnia is associated with intubation in COVID-19 diagnosed patients. medRxiv; 2021. doi: 10.1101/2021.11.19.21266581.
Von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344-349. doi: 10.1016/j.jclinepi.2007.11.008
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-2533. doi: 10.1001/jama.2012.5669.
Rubio HMA, Bretón LI. Obesidad en tiempos de COVID-19. Un desafío de salud global. Endocrinol Diabetes y Nutr. 2021;68(2):123-129. doi: 10.1016/j.endinu.2020.10.001.
Tiruvoipati R, Pilcher D, Buscher H, et al. Effects of hypercapnia and hypercapnic acidosis on hospital mortality in mechanically ventilated patients. Crit Care Med. 2017;45(7):e649-e656. doi: 10.1097/ccm.0000000000002332.
Tiruvoipati R, Serpa Neto A, Young M, et al. An exploratory analysis of the association between hypercapnia and hospital mortality in critically ill patients with sepsis. Ann Am Thorac Soc. 2022;19(2):245-254. doi: 10.1513/AnnalsATS.202102-104OC.
Mochizuki K, Fujii T, Paul E, Anstey M, et al. Acidemia subtypes in critically ill patients: An international cohort study. J Crit Care. 2021;64:10-17. doi: 10.1016/j.jcrc.2021.02.006.
Nassar B. Should we be permissive with hypercapnia? Ann Am Thorac Soc. 2022;19(2):165-166. doi: 10.1513/AnnalsATS.202108-997ED.
Gendreau S, Geri G, Pham T, Vieillard-Baron A, Mekontso Dessap A. The role of acute hypercapnia on mortality and short-term physiology in patients mechanically ventilated for ARDS: a systematic review and meta-analysis. Intensive Care Med. 2022;48(5):517-534. doi: 10.1007/s00134-022-06640-1.
Torres A, Motos A, Riera J, et al. The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients. Crit Care. 2021;25(1):331. doi: 10.1186/s13054-021-03727-x.
Cressoni M, Cadringher P, Chiurazzi C, et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189(2):149-158. doi: 10.1164/rccm.201308-1567OC.
Demiselle J, Calzia E, Hartmann C, et al. Target arterial PO2 according to the underlying pathology: a mini-review of the available data in mechanically ventilated patients. Ann Intensive Care. 2021;11(1):88. doi: 10.1186/s13613-021-00872-y.
Shenoy N, Luchtel R, Gulani P. Considerations for target oxygen saturation in COVID-19 patients: are we under-shooting? BMC Med. 2020;18(1):260. doi: 10.1186/s12916-020-01735-2.
Barrot L, Asfar P, Mauny F, et al. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med. 2020;382(11):999-1008. doi: 10.1056/NEJMoa1916431.
Chu DK, Kim LH, Young PJ, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018;391(10131):1693-1705. doi:10.1016/S0140-6736(18)30479-3.
Silva PL, Ball L, Rocco PRM, et al. Physiological and pathophysiological consequences of mechanical ventilation. Semin Respir Crit Care Med. 2022;43(3):321-334. doi: 10.1055/s-0042-1744447.
Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567-1575. doi: 10.1007/s00134-016-4505-2.
Uchida K. Respiratory rate as a factor in lung injury-not just what you set, but how you set. Anesthesiology. 2023;138(4):351-353. doi: 10.1097/ALN.0000000000004502.
Pereira RML, Maia IS, Laranjeira LN, et al. Driving pressure-limited strategy for patients with acute respiratory distress syndrome. A pilot randomized clinical trial. Ann Am Thorac Soc. 2020;17(5):596-604. Available in: doi: doi.org/10.1513/AnnalsATS.201907-506OC.
Terragni PP, Rosboc G, Tealdi A, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160-166. Available in: doi.org/10.1164/rccm.200607-915OC.