2023, Number 8
<< Back Next >>
Med Crit 2023; 37 (8)
Nervo-vascular coupling as a prognosis of mortality in patients with sepsis in the intensive care unit
Del RTM, López FJ, Cortes RJS, Huanca PJM
Language: Spanish
References: 30
Page: 652-661
PDF size: 266.95 Kb.
ABSTRACT
Introduction: nervovascular coupling is a proposal that involves indices of dysfunction of the autonomic nervous system. In patients with sepsis and septic shock, there is excessive activation of the sympathetic nervous system with an increase in levels of circulating endogenous catecholamines, increasing the stimulation of adrenergic receptors leading to desensitization. Stimulation has a negative chronotropic and inotropic effect; it can modify blood pressure as a secondary effect of regulating cardiac output.
Objective: determine the usefulness of neuro-vascular coupling as a predictor of mortality in patients with sepsis in the intensive care unit.
Material and methods: type of retrospective, descriptive, observational and longitudinal study.
Results: an accuracy test was performed on the proposed indices of nerve-vascular coupling associated with dysfunction, of which AUC 0.67 was found for aortic distensibility and test validity S 0.88, E 0.55 (p 0.02) was performed. AUC wave variability 0.70 S 0.96, E 0.51 (p < 0.05). Heart rate variance AUC 0.73 S 0.72, E 0.69 (p < 0.05). Maximum ventilation test AUC 0.93, S 0.88 E 0.89 (p < 0.05). The analysis by global survival curve shows that since there is no increase in aortic distensibility as an indicator of nerve-vascular dysfunction after 15 days of hospital stay compared to admission to the intensive care unit, survival is estimated at just over 60%.
Conclusions: the evaluation of the dysfunction of the autonomic nervous system with nerve-vascular coupling indices is a feasible proposal for monitoring in patients with sepsis and septic shock in the intensive care unit.
REFERENCES
Carrara M, Ferrario M, Bollen Pinto B, Herpain A. The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Ann Intensive Care. 2021;11(1):80. Available in: https://doi.org/10.1186/s13613-021-00869-7
Carrara M, Herpain A, Baselli G, Ferrario M. Vascular decoupling in septic shock: the combined role of autonomic nervous system, arterial stiffness, and peripheral vascular tone. Front Physiol. 2020;11:594. Available in: https://doi.org/10.3389/fphys.2020.00594
Höcht C, Bertera F, Walter OJA, Taira CA. Capítulo 43 Rol del sistema simpático y parasimpático. Cardiologia. 208-213.
Ramírez AJ. Sistema nervioso autónomo y control de la presión arterial. Rev Arg Anest. 2003;61(6):355-359.
Bruno RM, Ghiadoni L, Seravalle G, Dell'oro R, Taddei S, Grassi G. Sympathetic regulation of vascular function in health and disease. Front Physiol. 2012;3:284.
Carrara M, Antenucci P, Liu S, et al. Autonomic and circulatory alterations persist despite adequate resuscitation in a 5-day sepsis swine experiment. Scientific Reports. 2022;12:19279. Available in: https://doi.org/10.1038/s41598-022-23516-y
Dünser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med. 2009;24(5):293-316. doi: 10.1177/0885066609340519.
Motiejunaite J, Amar L, Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol (Paris). 2021;82(3-4):193-197. Available in: https://doi.org/10.1016/j.ando.2020.03.012
Nagayama D, Imamura H, Endo K, et al. Marker of sepsis severity is associated with the variation in cardio-ankle vascular index (CAVI) during sepsis treatment. Vasc Health Risk Manag. 2019;15:509-516. Available in: https://doi.org/10.2147/VHRM.S228506
Schuurman AR, Sloot PMA, Wiersinga WJ, van der Poll T. Embracing complexity in sepsis. Crit Care. 2023;27(1):102.
Galván CRI, Monares ZE, Chaires GR, et al. Acoplamiento ventrículo-arterial en choque séptico. Rev Asoc Mex Med Crit y Ter Int. 2012;26(1):26-35.
Sayk F, Vietheer A, Schaaf B et al. Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am Physiol Regul Integr Comp Physiol. 2008;295(3):R891-R89. doi: 10.1152/ajpregu.90444.2008.
Li J, Sun W, Guo Y, Ren Y, Li Y, Yang Z. Prognosis of β-adrenergic blockade therapy on septic shock and sepsis: A systematic review and meta-analysis of randomized controlled studies. Cytokine. 2020;126:154916.
Jozwiak M. Alternatives to norepinephrine in septic shock: Which agents and when? J Intensive Med. 2022;2(4):223-232.
Stolk RF, van der Pasch E, Naumann F, et al. Norepinephrine dysregulates the immune response and compromises host defense during sepsis. Am J Respir Crit Care Med. 2020;202(6):830-842. doi: 10.1164/rccm.202002-0339OC.
Idiáquez CJ, Idiáquez RJF, Benarroch E. Clinical evaluation of dysautonomia. Rev Chil Neuro-Psiquiat. 2020;58(4):324-336.
Lahiri MK, Kannankeril PJ, Goldberger JJ. Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J Am Coll Cardiol. 2008;51(18):1725-1733.
Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588-605. Available in: https://doi.org/10.1093/eurheartj/ehl254
Bia D, Zocalo Y. Rigidez arterial: evaluación no invasiva en la práctica clínica Importancia clínica y análisis de las bases metodológicas de los equipos disponibles para su evaluación. Rev Urug Cardiol. 2014;29(1):39-59.
Kazune S, Grabovskis A, Cescon C, Strike E, Vanags I. Association between increased arterial stiffness and clinical outcomes in patients with early sepsis: a prospective observational cohort study. Intensive Care Med Exp. 2019;7(1):26. Available in: https://doi.org/10.1186/s40635-019-0252-3
Cossío-Aranda JE, Berríos-Bárcenas EA, Rodríguez-Rosales F, et al. Central blood pressure and vascular stiffness in Mexican population. Arch Cardiol Mex. 2020;90(1):21-27. Available in: https://doi.org/10.24875/acme.m20000092
Abuli M, Sanz-De La Garza M, Vidal B, et al. Aortic stiffness and distensibility in elite athletes: impact of discipline and gender. European Heart Journal. 2020;41(Suppl.2):ehaa946.3123. Available in: https://doi.org/10.1093/ehjci/ehaa946.3123
Obeid H, Bikia V, Fortier C, et al. Assessment of stiffness of large to small arteries in multistage renal disease model: a numerical study. Front Physiol. 2022;13:832858. doi: 10.3389/fphys.2022.832858.
Kazune S, Grabovskis A, Cescon C, Strike E, Vanags I. Association between increased arterial stiffness and clinical outcomes in patients with early sepsis: a prospective observational cohort study. Intensive Care Med Exp. 2019;16;7(1):26. Available in: https://doi.org/10.1186/s40635-019-0252-3
Forcada P, Melgarejo E, Echeverri D. Quantification of arterial stiffness: From basic to clinical. Rev Colomb Cardiol. 2015;22(2):69-71.
Alvarado JS, Alvarado ANA, Dorantes MG. Assessment of the dysautonomia presence in parkinson disease through cardiovascular signal analysis. Revista Mexicana de Ingenieria Biomedica. 2017;38(1):141-154.
Rodas G, Pedret CC, Ramos J, Capdevila L. Heart rate variability: definition, measurement and clinical relation aspects. Archivos de Medicina del Deporte. 2008;25(124):113-127.
Hou J, Lu K, Chen P, et al. Comprehensive viewpoints on heart rate variability at high altitude. Clin Exp Hypertens. 2023;45(1):2238923. Available in: https://doi.org/10.1080/10641963.2023.2238923.
Krause E, Vollmer M, Wittfeld K, et al. Evaluating heart rate variability with 10 second multichannel electrocardiograms in a large population-based sample. Front Cardiovasc Med. 2023;10:1144191. Available in: https://doi.org/10.3389/fcvm.2023.1144191
Ochagavía A, Zapata L, Carrillo A, Rodríguez A, Guerrero M, Ayuela JM. Evaluación de la contractilidad y la poscarga en la unidad de cuidados intensivos. Med Intensiva. 2012;36(5):365-374.