2022, Number 1
<< Back Next >>
Revista Habanera de Ciencias Médicas 2022; 21 (1)
Hypoglycemic effect of NeuroEPO in diabetic and non-diabetic rats
Fernández RT, Clapés HS, Pérez HCL, Barreto LJJ, Fernández PG
Language: Spanish
References: 31
Page: 1-7
PDF size: 992.20 Kb.
ABSTRACT
Introduction:
NeuroEPO is a non-hematopoietic variant of human recombinant erythropoietin, which may have a hypoglycemic effect.
Objectives:
To evaluate the influence of NeuroEPO on glycemia in diabetic and non-diabetic rats.
Material and Methods:
The experiments were conducted in Wistar rats with streptozotocin-induced diabetes with and without insulin treatment, and in non-diabetic rats with glucose overload. In each experiment, one group received a subcutaneous injection of NeuroEPO (0.5 mg/kg) and the other group received a vehicle. Glycemia was determined in 120 min. Comparisons were made using one-and two-way analysis of variance, followed by the Bonferroni test. The differences were considered significant with p values < 0,05.
Results:
In diabetic rats without insulin treatment, glycemic levels decreased significantly in the group that received NeuroEPO. In nondiabetic rats that received NeuroEPO and a glucose overload, glycemia was similar to that in the control group. In diabetic rats that received NeuroEPO and insulin, the glycemia reduction was greater than in the group that only received insulin.
Conclusions:
NeuroEPO has a hypoglycemic effect in diabetic rats due to an insulinotropic mechanism that shows synergism with insulin in the treatment of hyperglycemia. However, NeuroEPO does not influence the glucose tolerance in non-diabetic rats, at least immediately. It is necessary to delve into the mechanisms by which NeuroEPO can reduce hyperglycemia and the influence of this substance under conditions of normoglycemia.
REFERENCES
Licea ME, Acosta A, Álvarez VA, Aldana D, Arnold Y, Álvarez Y, et al. Diabetes mellitus. Una mirada integral [Internet]. La Habana: Editorial de Ciencias Médicas; 2021 [Citado 19/06/2021]. Disponible en: Disponible en: http://www.bvscuba.sld.cu/libro/diabetes-mellitus-una-mirada-integral//
Dirección de Registros Médicos y Estadísticas de Salud. Anuario estadístico de salud 2019 [Internet]. La Habana: Ministerio de Salud Pública; 2020 [Citado 19/06/2021]. Disponible en: Disponible en: http://files.sld.cu/bvscuba/files/2020/05/Anuario-Electrónico-Español-2019-ed-2020.pdf
American Diabetes Association. Introduction: Standards of medical care in diabetes-2021. Diabetes Care [Internet]. 2020;44(Suppl. 1):S1-S2. Disponible en: http://doi.org/10.2337/dc21-Sint
Suresh S, Rajvanshi PK, Noguchi CT. The many facets of erythropoietin physiologic and metabolic response. Front Physiol [Internet]. 2020;10:1534. Disponible en: http://doi.org/10.3389/fphys.2019.01534
Peng B, Kong G, Yang C, Ming Y. Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis [Internet]. 2020;11(2):2-12. Disponible en: http://doi.org/10.1038/s41419-020-2276-8
Gholamzadeh R, Eskandari M, Bigdeli MR, Mostafavi H. Erythropoietin pretreatment effect on blood glucose and its relationship with inflammatory factors after brain ischemic-reperfusion injury in rats. Basic Clin Neurosci [Internet]. 2018;9(5):347-56. Disponible en: http://doi.org/10.32598/bcn.9.5.347
Castillo C, Burgos CF, Hidalgo A, Silva Grecchi T, Gavilán J, Roberto J, et al. Neuroprotective effects of erythropoietin on neurodegenerative and ischemic brain diseases: the role of erythropoietin receptor. Neural Regen Res [Internet]. 2017;12(9):1381-9. Disponible en: http://doi.org/10.4103/1673-5374.215240
Rey F, Balsari A, Giallongo T, Ottolenghi S, Di Giulio AM, Samaja M, et al. Erythropoietin as a neuroprotective molecule: an overview of its therapeutic potential in neurodegenerative diseases. ASN Neuro [Internet]. 2019;11:1-8. Disponible en: http://doi.org/10.1177/1759091419871420
Kudenchuck PJ. Erythropoietin for out-of-hospital cardiac arrest: growing together or apart?. JACC [Internet]. 2016;68(1):50-2. Disponible en: http://doi.org/10.1016/j.jacc.2016.03.598
Bing Liu, Yuzeng Xue, Huali Wei, Junmeng Liu, Na Jia, Ming Lan. Effect of erythropoietin activating EPO-EPOR signalling pathway on improving cardiac function in diabetic rats. Acta Medica Mediterranea [Internet]. 2020;36:2999-3004. Disponible en: http://doi.org/10.19193/0393-6384_2020_5_461
Zhu M, Wang L, Yang J, Xie K, Zhu M, Liu S, et al. Erythropoietin ameliorates lung injury by accelerating pulmonary endothelium cell proliferation via Janus kinase-signal transducer and activator of transcription 3 pathway after kidney ischemia and reperfusion injury. Transplant Proc [Internet].2019;51(3):972-8. Disponible en: http://doi.org/10.1016/j.transproceed.2019.01.059
Wu SH, Lu IC, Tai MH, Chai CY, Kwan AL, Huang SH. Erythropoietin alleviates burn-induced muscle wasting. Int J Med Sci [Internet].2020;17(1):33-44. Disponible en: http://doi.org/10.7150/ijms.38590
Chen L, Sun Q, Liu S, Hu H, Lv J, Ji W, et al. Erythropoietin improves glucose metabolism and pancreatic ß-cell damage in experimental diabetic rats. Mol Med Rep [Internet]. 2015;12(4):5391-8. Disponible en: http://doi.org/10.3892/mmr.2015.4006
Maiese K. Erythropoietin and diabetes mellitus. World J Diabetes [Internet]. 2015;6(14):1259-73. Disponible en: http://doi.org/10.4239/wjd.v6.i14.1259
El Desouki NI, Tabl GA, Abdel Aziz KK, Salim EI, Nazeeh N. Improvement in beta-islets of Langerhans in alloxan-induced diabetic rats by erythropoietin and spirulina. JOBAZ [Internet].2015;71:20-31. Disponible en: http://doi.org/10.1016/j.jobaz.2015.04.003
Niu HS, Shan Ch, Niu Sh, Cheng J, Lee K. Erythropoietin ameliorates hyperglycemia in type 1-like diabetic rats. Drug Des Dev Ther [Internet]. 2016;10:1877-84. Disponible en: http://doi.org/10.2147/DDDT.S1058677
Kuo Sh, Li Y, Cheng KcH, Niu Ch, Cheng J, Niu H. Investigation of the pronounced erythropoietin-induced reduction in hyperglycemia in type 1-like diabetic rats. Endocr J [Internet].2018;65(2):181-91. Disponible en: http://doi.org/10.1507/endocrj.EJ17-0353
EL Okela AZ, El Arbagyb AR, Yasseinb YS, Khodirc Kasemb HE. Effect of erythropoietin treatment on hemoglobin A1c levels in diabetic patients with chronic kidney disease. J Egypt Soc Nephrol Transplant [Internet].2019;19(3):86-94. Disponible en: http://doi.org/10.4103/jesnt.jesnt_2_19
Rama R, Garzón F, Rodríguez Cruz Y, Maurice T, García Rodríguez JC. Neuroprotective effect of Neuro-EPO in neurodegenerative diseases: "Alea jacta est". Neural Regen Res [Internet].2019;14(9):1519-21. Disponible en: http://doi.org/10.4103/1673-5374.255968
Garzón F, Rodríguez Y, García JC, Rama R. Neuroprotective effects of NeuroEPO using an in vitro model of stroke. Behav Sci (Basel) [Internet]. 2018;8(26):1-11. Disponible en: http://doi.org/10.3390/bs8020026
Garzón F, Coimbra D, Parcerisas A, Rodríguez Y, García JC, Soriano E, et al. NeuroEPO preserves neurons from glutamate-induced excitotoxicity. J Alzheimers Dis [Internet]. 2018;65(4):1469-83. Disponible en: http://doi.org/10.3233/JAD-180668
Maurice T, Mustafa MH, Desrumaux C, Keller E, Naert G, García Barceló M, et al. Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Aß25-35 non-transgenic mouse model of Alzheimer's disease. J Psychopharmacol [Internet].2013;27(11):1044-57. Disponible en: http://doi.org/10.1177/0269881113494939
Rodríguez Y, Strehaiano M, Rodríguez T, García JC, Maurice T. An intranasal formulation of erythropoietin (Neuro-EPO) prevents memory deficits and amyloid toxicity in the APPSwe transgenic mouse model of Alzheimer's disease. J Alzheimer´s Dis [Internet].2017;55(1):231-48. Disponible en: http://doi.org/10.3233/JAD-160500
Santos MO, Díaz MA, Jiménez RD, Pomares IY, Festary CT, González CA, et al. Nasal administration of the neuroprotective candidate NeuroEPO to healthy volunteers: a randomized, parallel, open-label safety study. BMC Neurol [Internet].2017;7(1):129. Disponible en: http://doi.org/10.1186/s12883-017-0908-0
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8 ed [Internet]. Washington: National Academies Press; 2011. Disponible en: http://doi.org/10.17226/12910
Quinna NA, Badwan AA. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug Design Development Therapy [Internet].2015;9:2515-25. Disponible en: http://doi.org/10.2147/DDDT.S79885
Bowe JE, Franklin ZJ, Hauge Evans AC, King AJ, Persaud SJ, Jones PM. Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol [Internet].2014;222(3):G13-G25. Disponible en: http://doi.org/10.1530/JOE-14-0182
Fernández T, Clapes S, Pérez CL, Barreto J, Fernandez G. Hypoglycemic effect of NeuroEPO in diabetic and non-diabetic rats [Internet]. Amsterdam: Mendeley Data; 2021 [Citado 19/06/2021]. Disponible en: https://data.mendeley.com/datasets/pty6hwbgnw/2
Pan Y, Hong X, Li L, Hong Y, Yan Q, Min H, et al. Erythropoietin reduces insulin resistance via regulation of its receptor-mediated signalling pathways in db/db mice skeletal muscle. Int J Biol Sci [Internet]. 2017;13(10):1329-40. Disponible en: http://doi.org/10.7150/ijbs.19752
Klip A, McGraw TE, James DE. Thirty sweet years of GLUT4. J Biol Chem [Internet].2019;294(30):11369-8. Disponible en: http://doi.org/10.1074/jbc.REV119.008351
Kasemb HE, El Mohsen WA, Shebla IS, El Rahman AA, Kamelb MA. Insulin resistance in patients with end-stage renal disease on hemodialysis: effect of short-term erythropoietin therapy. J Egypt Soc Nephrol Transplant [Internet]. 2020;20(2):111-9. Disponible en: http://doi.org/10.4103/jesnt.jesnt_25_19