2006, Number 2
<< Back Next >>
Microbiología 2006; 48 (2)
Microbial interactions with heavy metals
Expulsion of heavy metals in bacteria
Interaction mechanisms with chromate and the biotechnological
potential of native fungi rootstocks from industrial
Resistance and accumulation mechanisms of heavy m
Cervantes C, Espino SAE, Acevedo AF, León RIL, Rivera CME, Avila RM, Wróbel KK, Wróbel ZK, Gutiérrez CJF, Rodríguez ZJS, Moreno SR
Language: Spanish
References: 35
Page: 203-210
PDF size: 115.87 Kb.
ABSTRACT
Living organisms are exposed in nature to heavy metals, commonly present in their ionized species. These ions exert diverse toxic effects on microorganisms. Metal exposure both selects and maintains microbial variants able to tolerate their harmful effects. Varied and efficient metal resistance mechanisms have been identified in diverse species of bacteria, fungi and protists. The study of the interactions between microorganisms and metals may be helpful to understand the relations of toxic metals with higher organisms such as mammals and plants. Some microbial systems of metal tolerance have the potential to be used in biotechnological processes, such as the bioremediation of environmental metal pollution or the recovery of valuable metals. In this work we analyze several examples of the interactions of different types of microbes with heavy metals; these cases are related either with basic research or with possible practical applications.
REFERENCES
Aguilera, S., M.E. Aguilar, M.P. Chávez, J.E. López-Meza, M. Pedraza-Reyes, J. Campos-García and C. Cervantes. 2004. Essential residues in the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 232:107-112.
Ahmad, I., M.I. Ansari and F. Aqil. 2006. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Ind. J. Exptl. Biol. 44:73-76.
Avilés, C., H. Loza, N. Terry and R. Moreno-Sánchez. 2003. Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis. Arch. Microbiol. 180:1-10.
Avilés, C., M.E. Torres-Márquez, D. Mendoza-Cózatl and R. Moreno-Sánchez. 2005. Time-course development of the Cd2+-hyper-accumulating phenotype in Euglena gracilis. Arch. Microbiol. 184:83-92.
Casiot, C., O. Bruneel, J.C. Personne, M. Leblanc, F. Elbaz-Poulichet. 2004. Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France). Sci. Total Environ. 320:259-267.
Cervantes, C., J. Campos-García, S. Devars, F. Gutiérrez-Corona, H. Loza-Tavera, J.C. Torres-Guzmán and R. Moreno-Sánchez. 2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25:335-347.
Devars, S., C. Avilés, C. Cervantes and R. Moreno-Sánchez. 2000. Mercury uptake and removal by Euglena gracilis. Arch. Microbiol. 174:175-180.
Espino-Saldaña, A.E. 2002. Aislamiento y caracterización de hongos resistentes a cromato nativos de desechos industriales. Tesis de Licenciatura. IIBE, Facultad de Química, Universidad de Guanajuato.
Greenberg, A.D., J.J. Connors, D. Jenkins and M. A. Franson. 1981. Standard methods for the examination of water and wastewater, 15th ed. American Public Health Association, Washington, D.C., pp 187-190.
Haney, C.J., G. Grass, S. Franke and C. Rensing. 2005. New developments in the understanding of the cation diffusion facilitator family. J. Ind. Microbiol. Biotechnol. 32:215-226.
Hargreaves, J.W., W.J.H. Lloyd and B.A. Witton. 1975. Chemistry and vegetation of highly acidic streams. Freshwater Biol. 5:563-576.
Jasso-Chávez, R. and R. Moreno-Sánchez. 2003. Cytosol-mitochondria transfer of reducing equivalents by a lactate shuttle in heterotrophic Euglena. Eur. J. Biochem. 270:4942-4951.
Katz, S.A. and H. Salem. 1993. The toxicology of chromium with respect to its chemical speciation: a review. J. Appl. Toxicol. 13:217-224.
Kempner, E.S. 1982. Stimulation and inhibition of metabolism and growth of Euglena gracilis. En: The Biology of Euglena, Buetow DE (Ed.). Academic Press, New York. Vol. III, p. 197-252.
McGrath, S.P. and S. Smith. 1990. Chromium and nickel. En: Heavy Metals in Soils. Alloway, B.J. (Ed.), pp. 125-150. Wiley, New York.
Mendoza-Cózatl, D., S. Devars, H. Loza and R. Moreno-Sánchez. 2002. Cadmium accumulation in the chloroplast of Euglena gracilis. Physiol. Plant. 115:276-283.
Mendoza-Cózatl, D., H. Loza, A. Hernández and R. Moreno-Sánchez. 2005 Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29:653-671.
Mendoza-Cózatl, D. and R. Moreno-Sánchez. 2005. Cd2+ transport and storage in the chloroplast of Euglena gracilis. BBA-Bioenergetics 1706:88-97.
Mendoza-Cózatl, D. and R. Moreno-Sánchez. 2006. Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J. Theor. Biol. 238:919-936.
Moreno-Sánchez, R., E. Saavedra, D. Mendoza-Cózatl and S. Rodríguez-Enríquez. 2005. El análisis de control de flujo como herramienta en la manipulación de vías metabólicas. Mensaje Bioquímico Vol. XXIX. Fac. Medicina, UNAM. pp.181-123.
Mukhopadhyay, R., B.P. Rosen, L.T. Phung and S. Silver. 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 26:311-325.
Muter, O., A. Patmalnieks and A. Rapoport. 2001. Interrelations of the yeast Candida utilis: metal reduction and its distribution in the cell and medium. Proc. Biochem. 36: 963-970.
Navarro, L., M.E. Torres-Márquez, S. González-Moreno, S. Devars, R. Hernández and R. Moreno-Sánchez. 1997. Comparison of physiological changes in Euglena gracilis during exposure to heavy metals of heterotrophic and autotrophic cells. Comp. Biochem. Physiol. 116C:265-272.
Nies, D.H. (2003) Efflux-mediated heavy metal resistance in prokayotes. FEMS Microbiol. Rev. 27:313-339.
Nies, D.H., S. Koch, S. Wachi, N. Peitzsch and M.H. Saier. 1998. CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J. Bacteriol. 180:5799-5802.
Park, D., Y.S. Yun, J.H. Jo and J.M. Park. 2005. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res. 39:533-540.
Paulsen, I.T., M.H. Brown and R.A. Skurray. 1996. Proton-dependent multidrug efflux systems. Microbiol. Rev. 60:575-608.
Pimentel, B.E., R. Moreno-Sánchez and C. Cervantes. 2002. Efflux of chromate by cells of Pseudomonas aeruginosa expressing the ChrA protein. FEMS Microbiol. Lett. 212:249-254.
Ramírez-Ramírez, R., C. Calvo-Méndez, M. Avila-Rodríguez, P. Lappe, M. Ulloa, R. Vázquez-Juárez and J.F. Gutiérrez-Corona. 2004. Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie van Leeuwenhoek 85:63-68.
Rodríguez-Zavala, J.S., M.A. Ortiz-Cruz and R. Moreno-Sánchez. 2006. Characterization of an aldehyde dehydrogenase from Euglena gracilis. Eukaryot. J. Microbiol. 53:36-42.
Saier, M.H. Jr. 2003. Tracing pathways of transport protein evolution. Mol. Microbiol. 48:1145-1156.
Silver, S. and L.T. Phung. 2005. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 32:587-605.
Solioz, M.A., A. Odermatt and R. Krapf. 1994. Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett. 346:44-47.
Srivastava, S. and I.S. Thakur. 2006. Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Biores. Technol. 97:1167-1173.
Wrobel, K., K. Wrobel, P.L. López-de-Alba and L. López-Martínez. 1997. Enhanced spectrophotometric determination of chromium (VI) with diphenylcarbazide using internal standard and derivative spectrophotometry. Talanta 44:2129-2136.