2006, Number 2
<< Back Next >>
Microbiología 2006; 48 (2)
Virus molecular biology
Interactions of virus with its host cell
Cellular proteins involved in the connection and entrance of dengue virus
The release and entrance of human astrovirus in its host cell are promoted by cellular origin proteases
López CS, del Angel RM, Chávez SS, Reyes del VJ, Ceballos OI, Medina F, Méndez E, Montero H, López S, González RA, Flint SJ
Language: Spanish
References: 25
Page: 196-202
PDF size: 87.55 Kb.
Text Extraction
No abstract
REFERENCES
Crill, W. D. and Roehring J. T. 2001. Monoclonal antibodies that bind to domain III of DEN E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J. Virol. 75, 4002-4007
Germi, R., Crance, J. M., Garin, D., Guimet, J., Lortat-Jacob, L., et al. 2002. Heparan sulfate-mediated binding of infectious DEN type 2 and yellow fever virus. Virology 292, 162-168.
Jindadamrongwech, S. and Smith, D. 2004. Identification of GRP78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch. Virol. 149, 915-927.
Lozach, P-Y, Burleigh, L., Staropoli, I., Navarro-Sanchez, E., et al. 2005. Drendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J. Biol. Chem. 280, 23698-23708
Reyes-del Valle, J. and Del Angel, R. M. 2004 Isolation of putative DEN receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods 116, 95-102.
Reyes del Valle, J., Chávez-Salinas, S, Medina F and del Angel, R.M. 2005. Heat shock protein 90 and heat shock protein 70 are components of Dengue virus receptor complex in human cells. J. Virol. 79, 4557-4567.
Méndez E., M.T. Fernández, Méndez-Toss, M., and Arias, C.F. 2002. Proteolytic processing of a serotype 8 human astrovirus ORF2 polyprotein. J. Virol. 76:7996-8002.
Méndez, E. , M. P. E. Salas-Ocampo, M. E. Munguía and C. F. Arias . 2003. Protein products of the open reading frames encoding nonstructural proteins of a human astrovirus serotype 8. J. Virol. 77:11378–11384.
Méndez, E., M. P. E. Salas-Ocampo y C. F. Arias. 2004. Caspases mediate the processing of the capsid precursor and the cell release of human astroviruses. J. Virol. 78:8601-8608.
Méndez, E. and C.F. Arias. 2006. “Astroviruses” In D. Knipe, P. Howley (Eds) Fields Virology, Lippincott-Raven, Philadelphia, In Press.
Teodoro, J. G., and P. E. Branton. 1997. Regulation of apoptosis by viral gene products. J Virol. 71:1739-1746.
Arias, C. F., Dector, M. A., Segovia, L., López, T., Camacho, M., Isa, P., Espinosa, R. & López, S. 2004. RNA silencing of rotavirus gene expression. Virus Res 102,43-51.
Estes, M. K. 2001. Rotaviruses and their replication. In Virology, 4th edn, pp. 1747-1785. Edited by D. N. Knipe & P. M. Howley. Philadelphia, PA.: Lippincott Williams and Wilkins.
Hershey, J. W. B. & Merrick, W. C. 2000. Translational control of gene expression, pp. 33-88. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. New York: Cold Spring Laboratory.
Imataka, H., Gradi, A. & Sonenberg, N. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. . EMBO J. 17,7480-7489.
Parashar, U. D., Hummelman, E. G., Bresee, J. S., Miller, M. A. & Glass, R. I. 2003. Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis 9,565-572.
Piron, M., Vende, P., Cohen, J. & Poncet, D. 1998. Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J. 17,5811-5821.
Barral PM, Rusch A, Turnell AS, Gallimore PH, Byrd PJ, Dobner T, Grand RJ. 2005. The interaction of the hnRNP family member E1B-AP5 with p53. FEBS lett. 579:2752-8.
Flint S.J. & R.A. Gonzalez. 2003. Regulation of mRNA production by the adenoviral E1B 55 kDa and E4 orf6 proteins. Curr. Top. Microbiol. Immunol. 272:287-330.
Gabler, S., H. Schutt, P. Groitl, H. Wolf, T. Shenk, and T. Dobner. 1998. E1B 55 kilodalton-associated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J. Virol. 72:7960–7971.
Gonzalez RA,& Flint SJ. 2002. Effects of mutations in the adenoviral E1B 55 kDa protein coding sequence on viral late mRNA metabolism. J Virol. 76:4507-4519.
Gonzalez RA, Huang W, Finnen R, Bragg C, and S.J. Flint. 2006. Adenovirus E1B 55-Kilodalton Protein Is Required for both Regulation of mRNA Export and Efficient Entry into the Late Phase of Infection in Normal Human Fibroblasts. J. Virol. 80:964-974.
Kang Y, Cullen BR. 1999. The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleocytoplasmic transport sequences. Genes Dev. 13:1126 –1139.
Shenk , T. 1996. Adenoviridae and their replication, p. 2111-2148. In B. Fields, P. Howley, and D. Knipe (ed.), Fields Virology. Raven Press, New York, N.Y.
Tauber B, Dobner T. 2001. Molecular regulation and biological function of adenovirus early genes: the E4 ORFs. Gene. 278:1-23.