2006, Number 2
<< Back Next >>
Microbiología 2006; 48 (2)
Cellular response to stress
Mutations of nutrimental stress and GIRA, a protein which inhibits gyrase in Escherichia coli
About how Candida glabrata detects and responses to stress
An approach to ambient life conditions of Esch
Gómez EC, Ramírez SJ, García MV, Gómez EMC, De Las Peñas A, Gallegos V, Cormack B, Castaño I, Delgado OL, Díaz AA, Membrillo HJ, Fernández RF, Bermúdez CR, Montañez C
Language: Spanish
References: 59
Page: 162-172
PDF size: 169.39 Kb.
ABSTRACT
Environmental changes induce a cellular response characterized by a modification in the genetic expression and physiology of the cell. This modification allows the cell to survive and adapt to the new environment. Current studies on cellular stress response are mainly focused on the identification of the genetic expression patterns (transcriptome, proteome), and their relation with the biochemical (metabolome), structural and functional changes displayed by the cells under stress. In the symposium on Cellular Response to Stress, four works were presented about the stress effect on cellular functions of bacteria and fungi: 1) nutritional stress in
Escherichia coli and DNA damage and mutagenesis, 2) nutritional and oxidative stress in Candida glabrata and subtelomeric silencing, 3) cold stress in
E. coli and RNA degradation, and 4) oxidative and heat stress in
E. coli and differential protein synthesis.
REFERENCES
Aguirre-Ramírez, M., J. Ramírez-Santos, L. Van Melderen & M. C. Gómez-Eichelmann. 2006. Expression of the F plasmid ccd toxin-antitoxin system in Escherichia coli cells under nutritional stress. Can. J. Microbiol. 52:24-30.
Baquero, M. R., M. Bouzon, J. Varea & F. Moreno. 1995. sbmC, a stationary-phase induced SOS Escherichia coli gene, whose product protects cells from the DNA replication inhibidor microcin B17. Mol. Microbiol. 18:301-311.
Baldwin, E. L., A. C. Berger, A. H. Corbett & N. Osheroff. 2005. Mms22p protects Saccharomyces cerevisiae from DNA damage induced by topoisomerase II. Nucleic Acids Res. 33:1021-1030.
Cairns, J. & P. L. Foster. 1991. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128:695-701.
Cairns, J., J. Overbaugh & S. Miller. 1988. The origin of mutants. Nature 335:142-145.
Chatterji, M. & V. Nagaraja. 2002. GyrI: a counter-defensive strategy against proteinaceous inhibitors of DNA gyrase. EMBO reports 31:261-267.
Couturier, M., E. M. Bahassi & L. Van Melderen. 1998. Bacterial death by DNA gyrase poisoning. Trends Microbiol. 6: 269-275.
Foster, P. L. 2004. Adaptive mutation in Escherichia coli. J. Bacteriol. 186:4846-4852.
García-Mata, V. 2005. Participación del gene gyrI en la generación de mutaciones de fase estacionaria en Escherichia coli. Tesis para obtener el título de Bióloga. Facultad de Ciencias, UNAM.
Gómez-Eichelmann, M. C. & R. Camacho-Carranza. 1995. El superenrollamiento del DNA y topoisomerasas en Escherichia coli. Rev. Latinoam. Microbiol. 37:291-304.
Hayes, F. 2003. Toxin-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301: 1496-1499.
He, A. S., P. R. Rohatgi, M. N. Hersh & S. M. Rosenberg. 2006. Roles of E. coli double-strand-break-repair proteins in stress-induced mutations. DNA Repair 5:258-273.
Hegde, S. S., M. W. Vetting, S. L. Roderick, L. A. Mitchenall, A. Maxwell, H. E. Takiff & J. S. Blanchard. 2005. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science 308:1480-1483.
Lewin, B. Genes VIII. 2004. Pearson Prentice Hall, NJ. USA.
Luria S. E. & M. Delbrück. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491-511.
Nakanishi, A., T. Oshida, T. Matsushita, S. Imajoh-Ohmi & T. Ohnuki. 1998. Identification of DNA gyrase inhibitor (GyrI) in Escherichia coli. J. Biol. Chem. 273:1933-1938.
Ramirez-Santos, J., V. García-Mata & M. C. Gómez-Eichelmann. 2006. Antimutator role of protein GyrI (SbmC), a DNA gyrase inhibitor, in starving Escherichia coli cells. Manuscrito en preparación.
Reyes-Domínguez, Y., G. Contreras-Ferrat, J. Ramírez-Santos, J. Membrillo-Hernández & M. C. Gómez-Eichelmann. 2003. Plasmid DNA supercoiling and gyrase activity in Escherichia coli wild-type and rpoS stationary-phase cells. J. Bacteriol. 185:1097-1100.
Ai, W., Bertram, P.G., Tsang, C.K., Chan, T.F., and Zheng, X.F. (2002) Regulation of subtelomeric silencing during stress response. Mol Cell 10: 1295-1305.
Avery, A.M., and Avery, S.V. (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276: 33730-33735.
Castaño, I., Pan, S.J., Zupancic, M., Hennequin, C., Dujon, B., and Cormack, B.P. (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55: 1246-1258.
Cormack, B.P., Ghori, N., and Falkow, S. (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285: 578-582.
De Las Peñas, A., Pan, S.J., Castaño, I., Alder, J., Cregg, R., and Cormack, B.P. (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17: 2245-2258.
Domergue, R., Castaño, I., De Las Peñas, A., Zupancic, M., Lockatell, V., Hebel, J.R., Johnson, D., and Cormack, B.P. (2005) Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308: 866-870.
González-Parraga, P., Hernández, J.A., and Argüelles, J.C. (2003) Role of antioxidant enzymatic defences against oxidative stress H(2)O(2) and the acquisition of oxidative tolerance in Candida albicans. Yeast 20: 1161-1169.
Mansour, M.K., and Levitz, S.M. (2002) Interactions of fungi with phagocytes. Curr Opin Microbiol 5: 359-365.
Ray, A., Hector, R.E., Roy, N., Song, J.H., Berkner, K.L., and Runge, K.W. (2003) Sir3p phosphorylation by the Slt2p pathway effects redistribution of silencing function and shortened lifespan. Nat Genet 33: 522-526.
Roy, N., and Runge, K.W. (2000) Two paralogs involved in transcriptional silencing that antagonistically control yeast life span. Curr Biol 10: 111-114.
Smith, J.S., Brachmann, C.B., Celic, I., Kenna, M.A., Muhammad, S., Starai, V.J., Avalos, J.L., Escalante-Semerena, J.C., Grubmeyer, C., Wolberger, C., and Boeke, J.D. (2000) A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A 97: 6658-6663.
Stone, E.M., and Pillus, L. (1996) Activation of an MAP kinase cascade leads to Sir3p hyperphosphorylation and strengthens transcriptional silencing. J Cell Biol 135: 571-583.
Tanny, J.C., and Moazed, D. (2001) Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product. Proc Natl Acad Sci U S A 98: 415-420.
Thorpe, G.W., Fong, C.S., Alic, N., Higgins, V.J., and Dawes, I.W. (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci U S A 101: 6564-6569.
Trick, W.E., Fridkin, S.K., Edwards, J.R., Hajjeh, R.A., and Gaynes, R.P. (2002) Secular trend of hospital-acquired candidemia among intensive care unit patients in the United States during 1989-1999. Clin Infect Dis 35: 627-630.
Benov, L & I. Fridovich. 1995. Superoxide dismutase protecs agains aerobic heat shock in Escherichia coli. J Bacteriol 177:3344-3346.
Echave, P., M. A. Esparza-Cerón., E. Cabiscol, J. Tamarit, J. Ros, J. Membrillo-Hernández & E.C.C Lin. 2002. DnaK dependence of mutan etanol oxidoreductase eveloved for aerobic funtion and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc Natl Acad Sci USA 99:4626-4631.
Nyström, T. 2005. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311-1317.
Bermúdez-Cruz, R., F. Fernández-Ramírez & C. Montañez. 2003. Conserved domains in polynucleotide phosphorylase among eubacteria. Biochimie 87(8):737-45.
Bouvet, P., K. Matsumoto & A. P. Wolffe. 1995. Sequence-specific RNA recognition by the Xenopus Y-box proteins. An essential role for the cold shock domain. J. Biol. Chem. 270(47):28297-28303.
Brandi, A., P. Pietroni, C. Gualerzi & C. Pon.1996. Post-transcriptional regulation of CspA expression in Escherichia coli. Mol. Microbiol. 19:231–240.
Cairrao, F., A. Cruz, H. Mori & C. Arraiano. 2003. Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol. Microbiol. 50(4):1349-1360.
Chen, C. & M. Deutscher. 2005. Elevation of RNase R in response to múltiple stress conditions. J. Biol. Chem. 280(41):34393-34396.
Deutscher, M. & N. Reuven. 1991. Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 88:3277-3280.
Goldstein, J., N. S. Pollitt & M. Inouye. 1990. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 87(1):283-287.
Giuliodori, A., A. Brandi, C. Gualerzi, C. Pon. 2006. Preferential translation of cold-shock mRNAs during cold adaptation. RNA 10(2):265-276.
Goverde, R., J. Huis in’t Velt, J. Kusters & F. Mooi. 1998. The psychrotropic bacterium Yersinia enterocolitica requires expression of pnp, the gene for polynucleotide phosphorylase, for growth at low temperature (5°C). Mol. Microbiol. 28(3):555-569.
Graumman, P., & M. A. Marahiel. 1996. Some like it cold: response of microorganisms to cold shock. Arch. Microbiol. 166:293-300.
Hurme, R., & M. Rhen. 1998. Temperature sensing in bacterial gene regulation – what it all boils down to. Mol. Microbiol. 30:1-6.
Jiang, W., Y. Hou & M. Inouye. 1997. CspA, the major cold shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272(1):196-202.
Jiang, W., L. Fang & M. Inouye. 1996. The Role of the 5’-End untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J. Bacteriol. 178:4919-4925.
Jones, P.G., R.A. VanBogelen & F.C. Neidhardt. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169:2092–2095.
Narberhaus, F., T. Waldminghaus & S. Chowdhury. 2006. RNA thermometers. FEMS Microbiol. Rev. 30:3-16.
Neuhaus, K., S. Rapposch, K. Francis & S. Scherer. 2000. Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of cspA1/A2 mRNA. J. Bacteriol. 182(11):3285-3288.
Phadtare, S., & K. Severinov. 2005. Nucleic acid melting by Escherichia coli CspE. Nucleic Acids Res. 33(17):5583-5590.
Prud’homme-Généreaux, A., R. Beran, I. Iost, C. Ramey, G. Mackie & R. Simons. 2004. Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a cold shock degradosome. Mol. Microbiol. 54(5):1409-1421.
Repoila, F., N. Majdalani & S. Gottesman. 2003. Small non-coding RNAs, coordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol. Microbiol. 48:855–861.
Symmons, M., M. Williams, B. Luisi, G. Jones & A. Carpousis. 2002. Running rings around RNA: a superfamily of phosphate-dependent RNases. Trends Biochem. Sci. 27(1):11-18.
Xia, B., H. Ke & M. Inouye. 2001. Aquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol. Microbiol. 40(1):179-188.
Yamanaka, K. & M. Inouye. 2001. Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in Escherichia coli. J. Bacteriol. 183(9):2808-2816.
Zhou, Z., M. Deutscher. 1997. An essential function for the phosphate-dependent exoribonucleases RNase PH and polynucleotide phosphorylase. J. Bacteriol. 179:4391-4395.