2006, Number 2
<< Back Next >>
Microbiología 2006; 48 (2)
Genomics and functional genomics in microbiology
Genomic diversity of Rhizobium etli: the Complete Genome and its –intraspecific–variation
Functional genomics in actinobacteria metabolism
Functional genomic of the actinobacterial metabolism
Id
Encarnación GS, González V, Santamaría RI, Bustos P, Acosta JL, Fernández JL, Hernández GI, Lozano L, Castillo S, Dávila G, Encarnación S, Salazar E, Martínez BAG, Hernández M, Reyes PA, Contreras S, Vargas MC, Domínguez VR , Gonzaga JC, Mora Y, Rivero MR, Mora J, Barona GF, Goodger A, Merino EC
Language: Spanish
References: 28
Page: 131-145
PDF size: 353.68 Kb.
ABSTRACT
Functional genomics is changing our understanding of biology and changing our approach to biological research. It brings about concerted, high-throughput genetics with analyses of gene transcripts, proteins, and metabolites to answer the ultimate question posed by all genome-sequencing projects: what is the biological function of each and every gene? Functional genomics is stimulating a change in the research paradigm away from the analysis of single genes, proteins, or metabolites towards the analysis of each of these parameters on a global scale. By identifying and measuring several, if not the entire, molecular group of actors that take part in a given biological process, functional genomics offers the panorama of obtaining a truly holistic representation of life. Functional genomics methods are defined by high-throughput methods which are, not necessarily hypothesis–dependent. They offer insights into mRNA expression, protein expression, protein localization, and protein interactions and may cast light on the flow of information within signaling pathways. At its beginning, biology involved observing nature and experimenting on its isolated parts. Genomic research now generates new types of complex observational data derived from nature. This review describes the tools that are currently being used for functional genomics work and considers the impact that this new discipline on microbiology research.
REFERENCES
Hinton, J. C. (1997). The Escherichia coli genome sequence: the end of an era or the start of the FUN?. Mol Microbiol, 3, 417-422.
Hughes, D. (2000). Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome Biol, 1, REVIEWS0006.
Galibert, F., T.M. Finan, S.R. Long, A. Pühler, P. Abola, F. Ampe, et al. 2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science. 293:668-72.
González, V., R.I. Santamaría, P. Bustos, I. Hernandez-González, A. Medrano-Soto, G. Moreno-Hagelsieb, et al. 2006. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA. 103:3834-9.
Goodner, B., G. Hinkle, S. Gattung, N. Miller, M. Blanchard, B. Qurollo, et al. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science. 294:2323-8.
Kaneko, T., Y. Nakamura, S. Sato, E. Asamizu, T. Kato, S. Sasamoto, et al. 2000. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7:331-8.
Kaneko, T., Y. Nakamura, S. Sato, K. Minamisawa, T. Uchiumi, S. Sasamoto, et al. 2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 (supplement). DNA Res. 9:225-56.
Moulin, L., A. Munive, B. Dreyfus, and C. Boivin-Masson. 2001. Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature. 411:948-50.
Piñero, D., E. Martínez, and R.K. Selander. 1988. Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol. 54:2825-32.
Wood, D.W., J.C. Setubal, R. Kaul, D.E. Monks, J.P. Kitajima, V.K. Okura, et al. 2001. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science. 294:2317-23.
Young, J.P., L.C. Crossman, A.W. Johnston, N.R. Thomson, Z.F. Ghazoui, K.H. Hull, et al. 2006. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 7:R34.
Encarnación S, Guzmán Y, Dunn MF, Hernández, Vargas M del C, & Mora J. 2003. Proteome analysis of aerobic and fermentative metabolism in Rhizobium etli CE3. Proteomics 3:1077-1085.
Encarnacion, S., Hernández M., Contreras S., Martínez-Batallar G., Vargas M. del C. Mora J. 2005. Comparative proteomics using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or partially sequenced genomes. Biological Procedures Online. 7:117-135. 2005.
Encarnación S, Vargas M del C, Dunn MF, Dávalos A, Mendoza G, Mora Y, & Mora J. 2002. AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli. J Bacteriol 184: 2287-2295.
González, V., R.I. Santamaría, P. Bustos, I. Hernandez-González, A. Medrano-Soto, G. Moreno-Hagelsieb, et al. 2006. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA. 103:3834-9.
Porubleva L, Vander VK, Kothari S, Livier DJ, & Chitnis PR. 2001. The proteome of maize: use of gene sequence and expressed sequence tag data for identification of proteins with mass fingerprints. Electrophoresis 22:1724-1738.
Osterman, A. & Overbeek, R. (2003) Missing genes in metabolic pathways: a comparative genomics approach. Curr. Opin. Chem. Biol., 7, 238-251.
Morett, E., Korbel, J.O., Rajan, E., Saab-Rincón, G., Olvera, M., Schmidt, S., Snel, B. & Bork, P. (2003) Systematic discovery of analogous enzymes in thiamine biosynthesis. Nat. Biotechnol. 7, 790-795.
Yanofsky, C. (2001) Advancing our knowledge in biochemistry, genetics, and microbiology through studies on tryptophan metabolism. Annu. Rev. Biochem. 70, 1-37.
Xie G., Bonner C.A., Song J., Keyhani N.O. & Jensen R.A. (2003) Intergenomic displacement via lateral gene transfer of bacterial trp operons in an overall context of vertical genealogy. BMC Biol. 2:15, doi:10.1186/1741-7007-2-15.
Barona-Gómez, F. & Hodgson, D.A. (2003) Ocurrence of a putative ancient-like isomerase involved in histidine and tryptophan biosynthesis. EMBO Rep., 4, 296-300.
Abreu-Goodger, C., Ontiveros-Palacios, N., Ciria, R. and Merino, E. 2004. Conserved regulatory motifs in bacteria: riboswitches and beyond. Trends in Genetics 20:475-479.
Barrick, J.E., Corbino, K.A., Winkler, W.C., Nahvi, A., Mandal, M., Collins, J., Lee, M., Roth, A., Sudarsan, N., Jona, I., Wickiser, J.K. y Breaker, R.R. 2004. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. U. S. A. 101: 6421-6426
Batey, R.T., Gilbert, S.D. and Montange, R.K. 2004. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. 432: 411-415.
Bailey, T.L. and Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers Proceedings of the 2nd International Conference on ISMB, AAAI Presspp. 28–36.
Moreno-Hagelsieb, G. and Collado-Vides, J. 2002. A powerful nonhomology method for the prediction of operons in prokaryotes. Bioinformatics 18, 329–336.
Tatusov, R.L., Koonin, E.V. and Lipman, D.J. 1997. A genomic perspective on protein families. Science. 278: 631-637.
Winkler, W, Nahvi A and Breaker R.R. 2002. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956.