2006, Number 2
In silico evaluation of a novel DNA chip based fingerprinting technology for viral identification
Language: English
References: 40
Page: 56-65
PDF size: 182.67 Kb.
ABSTRACT
The identification of microorganisms by whole genome DNA fingerprinting was tested “in silico”. 94 HPV genome sequences were submitted to virtual hybridization analysis on a DNA chip with 342 probes. This Universal Fingerprinting Chip (UFC) constitutes a representative set of probes of all the possible 8-mer sequences having at least two internal and non contiguous sequence differences between all them. A virtual hybridization analysis was performed in order to find the fingerprinting pattern that represents the signals produced for the hybridization of the probes allowing at most a single mismatch. All the fingerprints for each virus were compared against each other in order to obtain all the pairwise distances measures. A match-extension strategy was applied to identify only the shared signals corresponding to the hybridization of the probes with homologous sequences between two HPV genomes. A phylogenetic tree was constructed from the fingerprint distances using the Neighbor-Joining algorithm implemented in the program Phylip 3.61. This tree was compared with that produced from the alignment of whole genome HPV sequences calculated with the program Clustal_X 1.83. The similarities between both trees are suggesting that the UFC-8 is able to discriminate accurately between viral genomes. A fingerprint comparative analysis suggests that the UFC-8 can differentiate between HPV types and subtypes.REFERENCES
Coutlee F, Rouleau D, Petignat P, Ghattas G, Kornegay JR, Schlag P, Boyle S, Hankins C, Vezina S, Cote P, Macleod J, Voyer H, Forest P, Walmsley S, Franco E. 2006. Enhanced Detection and Typing of Human Papillomavirus (HPV) DNA in Anogenital Samples with PGMY Primers and the Linear Array HPV Genotyping Test. J Clin Microbiol. 44(6):1998-2006.
Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C, Dimitrijevic M, Doggett NA, Fawcett JJ, Glavina T, Goodwin LA, Hill KK, Hitchcock P, Jackson PJ, Keim P, Kewalramani AR, Longmire J, Lucas S, Malfatti S, McMurry K, Meincke LJ, Misra M, Moseman BL, Mundt M, Munk AC, Okinaka RT, Parson-Quintana B, Reilly LP, Richardson P, Robinson DL, Rubin E, Saunders E, Tapia R, Tesmer JG, Thayer N, Thompson LS, Tice H, Ticknor LO, Wills PL, Brettin TS, Gilna P. 2006. Pathogenomic Sequence Analysis of Bacillus cereus and Bacillus thuringiensis Isolates Closely Related to Bacillus anthracis. J Bacteriol. 188(9):3382-3390.
Sandri MT, Lentati P, Benini E, Dell’orto P, Zorzino L, Carozzi FM, Maisonneuve P, Passerini R, Salvatici M, Casadio C, Boveri S, Sideri M. 2006. Comparison of the Digene HC2 Assay and the Roche AMPLICOR Human Papillomavirus (HPV) Test for Detection of High-Risk HPV Genotypes in Cervical Samples. J Clin Microbiol. 44(6):2141-6.
Zimmer K, Drager KG, Klawonn W, Hess RG. 1999. Contribution to the diagnosis of Johne’s disease in cattle. Comparative studies on the validity of Ziehl-Neelsen staining, faecal culture and a commercially available DNA-Probe test in detecting Mycobacterium paratuberculosis in faeces from cattle. Zentralbl Veterinarmed B. (2):137-140.