2022, Number 1
Analysis of homogeneous textures for the volumetric estimation of brain matter by computed tomography
Language: Spanish
References: 23
Page:
PDF size: 471.48 Kb.
ABSTRACT
Texture analysis applications and their extraction of features are considered research trends in neuroscience. Texture as a method of image analysis has shown promising results in the detection of visible and non-visible lesions, and in computed tomography (CT) studies they are scarce. The present research aims to determine the applicability of the automatic processing of homogeneous texture indices in the volumetric estimation of brain gray matter in cranial CT images. For this, artificial images with predefined regions and the selection of CT images were used in patients with previous indications for CT of the skull. Two fundamental steps are taken for the implementation of this approach. As a result, an automatic windowless pattern recognition method was obtained by means of the extraction of homogeneous texture characteristics through the co-occurrence matrix.REFERENCES
Hernández Cortés K, Mesa Pujals AA, García Gómez O, Montoya Pedrón A. Morfología del envejecimiento cerebral: La morfometría como herramienta para la cuantificación de los cambios degenerativos cerebrales. En Morfovirtual 2020 [Internet]; 1-30 Noviembre de 2020; Cuba. Cuba: MINSAP; 2020 [citado 2021 Mar]. Disponible en: https://www.google.com/search?q=Morfolog%C3%ADa+del+envejecimiento+cerebral%3A+La+morfometr%C3%ADa+como+herramienta+para+la+cuantificaci%C3%B3n+de+los+cambios+degenerativos+cerebrales.+&ie=utf-8&oe=utf-8&client=firefox-b-ab
De Leo JM, Schwartz M, Creasey H, Cutler N, Rapoport SI. Computer assisted categorization of brain computerized tomography pixels into cerebrospinal fluid, white matter, and gray matter. Computers and biomedical research [Internet]. 1985 [cited 2021 Mar];18(1). Available from: https://pubmed.ncbi.nlm.nih.gov/3838273/
Fernández Viadero C, Verduga Vélez R, Crespo Santiago D. Deterioro Cognitivo Leve. Patrones de envejecimiento cerebral. Rev Esp Geriatr Gerontol [Internet]. 2017 [citado 13 Feb 2020];52(Supl 1):7-14. Disponible en: https://www.elsevier.es/es-revista-revista-espanola-geriatria-gerontologia-124-pdf-S0211139X18300738
Alharan AF, FatlawiHK, Ali NS. A cluster-based feature selection method for image texture classification. Indonesian Journal of Electrical Engineering and Computer Science [Internet]. 2019 Jun [cited 2021 Mar];14(3):1433-42. Available from: http://ijeecs.iaescore.com/index.php/IJEECS/article/download/16643/12225
Sudheesh KV, Basavaraj L. Impact of Statistical Texture Feature Abstraction Based Classification Applied for Detection of Abnormalities in Brain CT Images. International Journal of Pure and Applied Mathematics [Internet]. 2018 [cited 2021 Mar];118(18):2645-54. Available from: https://acadpubl.eu/jsi/2018-118-18/articles/18c/42.pdf
Hagenauer MH, Schulmann A, Li JZ, Vawter MP, Walsh DM, Thompson RC, et al. Inference of cell type content from human brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diagnosis. PloS One [Internet]. 2018 [cited 2021 Mar];13(7):[about 31 p.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6049916/
Ruttimann UE, Joyce EM, Rio DE, Eckardt MJ. Fully automated segmentation of cerebrospinal fluid in computed tomography. Psychiatry Research: Neuroimaging [Internet]. 1993 [cited 2021 Mar];50(2). Available from: https://www.semanticscholar.org/paper/Fully-automated-segmentationofcerebrospinalfluidRuttimannJoyce/e4dd84856d2f15220b8241d84a247d9999bf9438
Daudt RC, Le Saux B, Boulch A, Gousseau Y. Guided anisotropic diffusion and iterative learning for weakly supervised change detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) [Internet]; 2019 June 16-17; Long Beach, CA, USA. 2020 Apr [cited 2021 Feb]. USA: IEEE. Available from: https://ieeexplore.ieee.org/abstract/document/9025678