2023, Number 4
<< Back Next >>
Cir Plast 2023; 33 (4)
Applications of artificial intelligence in plastic and reconstructive surgery: a comprehensive review of the literature
Telich-Tarriba JE, Meraz-Soto JM, Prieto-Vargas V
Language: Spanish
References: 35
Page: 152-160
PDF size: 281.83 Kb.
ABSTRACT
Evidence-based medicine focuses on delivering patient care based on high-quality, objective, and validated information. In recent times, the emergence of artificial intelligence has transformed clinical practice. This technology equips medical professionals with a robust toolset for scrutinizing vast datasets and dispensing the best evidence-based medicine. The domain of plastic surgery has not been slow to embrace this technological wave, integrating artificial intelligence tools progressively into various aspects such as diagnosis, treatment assessment, and the training of future surgeons. This work aims at presenting a comprehensive literature review that fully describes the existing applications of artificial intelligence in our specialized field integrally. The potential of artificial intelligence in revolutionizing plastic surgery is enormous. It keeps the promise to improve the precision, effectiveness, and safety of surgical procedures. Moreover, it stands out to evaluate to outcomes and prompts the creation of therapeutic alternatives. This paper highlights the pivotal role that artificial intelligence is poised to play in the evolution of plastic surgery, transforming it into refined and forward-looking discipline.
REFERENCES
Cruz-Zermeño M, Seidman-Sorsby A, Telich-Tarriba JE. Niveles de evidencia en artículos publicados por la revista Cirugía Plástica: un análisis bibliométrico a 10 años. Cir Plast 2022; 32 (2): 82-85.
Eldaly AS, Ávila FR, Torres-Guzmán RA, Maita K, García JP, Palmieri Serrano L et al. Simulation and artificial intelligence in rhinoplasty: a systematic review. Aesthetic Plast Surg 2022; 46 (5): 2368-2377.
Vles MD, Terng NCO, Zijlstra K, Mureau MAM, Corten EML. Virtual and augmented reality for preoperative Lanning in plastic surgical procedures: a systematic review. J Plast Reconstr Aesthet Surg 2020; 73 (11): 1951-1959.
Nguyen C, Nicolai ESJ, He JJ, Roshchupkin GV, Corten EML. 3D surface imaging technology for objective automated assessment of facial interventions: a systematic review. J Plast Reconstr Aesthet Surg 2022; 75 (11): 4264-4272.
Murphy DC, Saleh DB. Artificial Intelligence in plastic surgery: What is it? Where are we now? What is on the horizon? Ann R Coll Surg Engl 2020; 102 (8): 577-580.
Liang X, Yang X, Yin S, Malay S, Chung KC, Ma J et al. Artificial intelligence in plastic surgery: applications and challenges. Aesthetic Plast Surg 2021; 45 (2): 784-790.
Morris MX, Rajesh A, Asaad M, Hassan A, Saadoun R, Butler CE. Deep learning applications in surgery: current uses and future directions. Am Surg 2023; 89 (1): 36-42.
Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Peter Campbell J. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol 2020; 9 (2): 14.
Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med 2019; 380 (14): 1347-1358.
Kim YJ, Kelley BP, Nasser JS, Chung KC. Implementing precision medicine and artificial intelligence in plastic surgery: concepts and future prospects. Plast Reconstr Surg Glob Open 2019; 7 (3): e2113.
Asaad M, Lu SC, Hassan AM, Kambhampati P, Mitchell D, Chang EI et al. The use of machine learning for predicting complications of free-flap head and neck reconstruction. Ann Surg Oncol 2023; 30 (4): 2343-2352.
Kiranantawat K, Sitpahul N, Taeprasartsit P, Constantinides J, Kruavit A, Srimuninnimit V et al. The first smartphone application for microsurgery monitoring: SilpaRamanitor. Plast Reconstr Surg 2014; 134 (1): 130-139.
Shi YC, Li J, Li SJ, Li ZP, Zhang HJ, Wu ZY et al. Flap failure prediction in microvascular tissue reconstruction using machine learning algorithms. World J Clin Cases 2022; 10 (12): 3729-3738.
Mak ML, Al-Shaqsi SZ, Phillips J. Prevalence of machine learning in craniofacial surgery. J Craniofac Surg 2020; 31 (4): 898-903.
Mizutani K, Miwa T, Sakamoto Y, Toda M. Application of deep learning techniques for automated diagnosis of non-syndromic craniosynostosis using skull. J Craniofac Surg 2022; 33 (6): 1843-1846.
Mendoza CS, Safdar N, Okada K, Myers E, Rogers GF, Linguraru MG. Personalized assessment of craniosynostosis via statistical shape modeling. Med Image Anal 2014; 18 (4): 635-646.
Ryu JY, Chung HY, Choi KY. Potential role of artificial intelligence in craniofacial surgery. Arch Craniofac Surg 2021; 22 (5): 223-231.
Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M. Big data and machine learning in plastic surgery: a new frontier in surgical innovation. Plast Reconstr Surg 2016; 137 (5): 890e-897e.
Chang CW, Ho CY, Lai F, Christian M, Huang SC, Chang DH, et al. Application of multiple deep learning models for automatic burn wound assessment. Burns 2023; 49 (5): 1039-1051.
Huang S, Dang J, Sheckter CC, Yenikomshian HA, Gillenwater J. A systematic review of machine learning and automation in burn wound evaluation: a promising but developing frontier. Burns 2021; 47 (8): 1691-1704.
Taib BG, Karwath A, Wensley K, Minku L, Gkoutos GV, Moiemen N. Artificial intelligence in the management and treatment of burns: a systematic review and meta-analyses. J Plast Reconstr Aesthet Surg 2023; 77: 133-161.
Gordillo G. AutoMated burn diagnostic system for healthcare. Indiana University. ClinicalTrials.gov identifier: NCT05167461. 2021 [Accessed 12/08/2023]. Available in: https://classic.clinicaltrials.gov/ct2/show/NCT05167461
Miller R, Farnebo S, Horwitz MD. Insights and trends review: artificial intelligence in hand surgery. J Hand Surg Eur 2023; 48 (5): 396-403.
Keller M, Guebeli A, Thieringer F, Honigmann P. Artificial intelligence in patient-specific hand surgery: a scoping review of literature. Int J Comput Assist Radiol Surg 2023; 18 (8): 1393-1403.
Daeschler SC, Bourget MH, Derakhshan D, Sharma V, Asenov SI, Gordon T et al. Rapid, automated nerve histomorphometry through open-source artificial intelligence. Sci Rep 2022; 12 (1): 5975.
Chen LWY, Goh M, Goh R, Chao YK, Huang JJ, Kuo WL et al. Robotic-assisted peripheral nerve surgery: a systematic review. J Reconstr Microsurg 2021; 37 (6): 503-513.
O'Neill AC, Yang D, Roy M, Sebastiampillai S, Hofer SOP, Xu W. Development and evaluation of a machine learning prediction model for flap failure in microvascular breast reconstruction. Ann Surg Oncol 2020; 27 (9): 3466-3475.
Hassan AM, Rajesh A, Asaad M, Nelson JA, Coert JH, Mehrara BJ et al. Artificial intelligence and machine learning in prediction of surgical complications: current state, applications, and implications. Am Surg 2023; 89 (1): 25-30.
Montemurro P, Lehnhardt M, Behr B, Wallner C. A machine learning approach to identify previously unconsidered causes for complications in aesthetic breast augmentation. Aesthetic Plast Surg 2022; 46 (6): 2669-2676.
Borsting E, Desimone R, Ascha M, Ascha M. Applied deep learning in plastic surgery: classifying rhinoplasty with a mobile app. J Craniofac Surg 2020; 31 (1): 102-106.
Guerrero DT, Asaad M, Rajesh A, Hassan A, Butler CE. Advancing surgical education: the use of artificial intelligence in surgical training. Am Surg 2023; 89 (1): 49-54.
Rokhshad R, Keyhan SO, Yousefi P. Artificial intelligence applications and ethical challenges in oral and maxillo-facial cosmetic surgery: a narrative review. Maxillofac Plast Reconstr Surg 2023; 45 (1): 14.
Jarvis T, Thornburg D, Rebecca AM, Teven CM. Artificial intelligence in plastic surgery: current applications, future directions, and ethical implications. Plast Reconstr Surg Glob Open 2020; 8 (10): e3200.
Telich-Tarriba JE. Unlocking the potential of AI in overcoming language barriers in academic publishing. J Plast Reconstr Aesthet Surg 2023; 83: 298-300.
Atiyeh B, Emsieh S, Hakim C, Chalhoub R. A narrative review of artificial intelligence (AI) for objective assessment of aesthetic endpoints in plastic surgery. Aesthetic Plast Surg 2023. doi: 10.1007/s00266-023-03328-9.