2006, Number S4
<< Back Next >>
Arch Cardiol Mex 2006; 76 (S4)
Involvement of the primitive cardiac segments in the normal cardiogenesis. Its importance in the pediatric cardiology
Salazar GM, Sánchez GC, Contreras RA, Carrillo ÁBA, Revilla MMC, Palomino GMA
Language: Spanish
References: 62
Page: 46-57
PDF size: 189.75 Kb.
ABSTRACT
The ample development of diagnostic echocardiography in pediatric cardiology has demanded precise knowledge of the abnormal anatomy of hearts that present congenital cardiac diseases. As a result, the information on morphologic and molecular aspects of cardiac embryogenesis has become fundamental to understand the anomalous anatomy of the malformed hearts. Based on these facts, in this paper we reviewed normal cardiogenesis, integrating the new information obtained experimentally in the chick embryo and from classic descriptive knowledge in humans. The age at which each cardiac segment appears is specified. At the same time, the changes in shape, relationships and position of these cardiac segments are detailed. Some implications of this process in the production of congenital cardiac defects and the importance of some specific genes are also discussed. This information is useful in the diagnosis of congenital cardiac diseases, as well as in discussing their embryogenesis. It is also beneficial in studying the possible mechanisms and genes implicated in normal morphogenesis of cardiac chambers, septa and valves. All this knowledge is important to plan strategies to avoid the production of this type of congenital pathologies.
REFERENCES
Lev M: Pathological diagnosis of positional variations in cardiac chambers in congenital heart disease. Lab Invest 1954; 3: 71-78.
Van Praagh R: The segmental approach to diagnosis in congenital heart disease. En: Bergsma D, ed. Birth Defects: original article series. Vol. 8. Baltimore: Williams & Wilkins, 1972: 4-23.
Shinebourne EA, Macartney FJ, Anderson RH: Sequential chamber localization. Logical approach to diagnosis in congenital heart disease. Br Hear J 1976; 38: 327-340.
De la Cruz MV, Berrazueta JR, Arteaga M, Attie F, Soni J: Rules for diagnosis of atrioventricular discordances and spatial identification of ventricles. Br Heart J 1976; 38: 341-354.
Anderson RH, Yen H Siew: Sequential segmental analysis-description and categorization for the millennium. Cardiol Young 1997; 7: 98-116.
Attie F: Anatomía de las cardiopatías congénitas. Arch Cardiol Méx 2004; 74: supl. 1: S13-S17.
Goor DA, Lillehei CW: Congenital malformations of the heart. The Anatomy of the heart. En: Embryology, anatomy and operative considerations. New York. Grune and Stratton. 1975: 1-37.
De la Cruz MV, Markwald R eds: Living morphogenesis of the heart. Boston, Basel, Berlin. Birkhäuser; 1998.
Sánchez GC, Salazar GM, Revilla MMC, Palomino GMA, Arteaga M, García- Peláez I: Análisis comparativo de la cardiogénesis en aves y mamíferos. Estudio anatómico y cronológico. En: Memorias Reunión Anual de Investigación 2005. Hospital Infantil de México Federico Gómez. México, DF, 14 y 15 de abril del 2005.
Streeter GL: Development horizon in human embryos. Description of age group XI, 13 to 20 somites and age group XII, 21 to 29 somites. Carnegie Contrib Embryol 1942; 30: 211-230.
Rosenquist GC, De Haan RL: Migration of precardiac cells in the chick embryo: a radioautographic study. Contrib Embryol 1966; 38: 111-121.
Montgomeri MO, Litvin J, González-Sánchez A, Bader D: Staging of commitment and differentiation of avian cardiac myocytes. Dev Biol 1994; 164: 63-71.
Rawles ME: The heart forming areas of the early chick blastoderm: Physiol Zool 1943; 16: 22-24.
DeHaan RL: Organization of the cardiogenic plate in the early chick embryo. Acta Embryol Morphol Exp 1963; 6: 26-38.
Stalberg H, De Haan RL: The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol 1969; 19: 128-159.
Linash KK, Lash JW: Early heart development: dynamics of endocardial cell sorting suggest a common origin with cardiomyocytes. Dev Dyn 1993; 195: 62-69.
Laverriere AC, Macniell C, Mueller C, Poelmann RE, Burch JBE, Evans T: GATA4/5/6, a subfamily of three transcriptional factors transcribed in developing heart and gut. J Biol Chem 1994; 269: 23177-23184.
Vokes SA, Krieg PA: Endoderm is required for vascular endothelial tube formation, but not for angioblast specification. Development 2002; 129: 775-785.
Alsan BH, Schultheiss TM: Regulation of avian cardiogenesis by FCF8 signaling. Development 2002; 129: 1935-1943.
Srivastava D, Olson N: A genetic blueprint for cardiac development. Nature 2000; 407: 221-232.
Lints TJ, Parson LM, Hartley L, Lyons I, Harvey RP: Nkx2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendent. Development 1993; 119: 419-431.
Erhman IA, Yutzey KE: Lack of regulation in the heart forming region of avian embryos. Dev Biol 1999; 207: 163-175.
Colas JF, Lawson A, Schoenwolf GC: Evidence that translation of smooth muscle alpha-actin mRNA is delayed in the chick promyocardium until fusion of the bilateral heart- forming regions. Dev Dynam 2000; 218: 316-330.
Davis CL: Development of the human heart from its first appearance to the stage found in embryos of twenty paired somites. Contrib Embryol 1927; 19: 245-284.
Kramer TC: The partitioning of the truncus and conus and the formation of the interventricular septum in the human heart. Am J Anat 1942; 71: 343-370.
De la Cruz MV, Sánchez-Gómez C, Palomino MA: The primitive cardiac regions in the straight tube heart (stage 9-) and their anatomical expressions in the mature heart: an experimental study in the chick embryo. J Anat 1989; 165: 121-131.
Sánchez-Gómez C, Pliego PL, Contreras RA, Munguía RMA, Salazar García M, García RHL, González JMA: Histological study of the proximal and distal segments of the embryonic outflow tract and great arteries. Anat Rec Part A 2005; 283A: 2002-211.
De la Cruz MV: Torsion and looping of the cardiac tube and primitive cardiac segments. Anatomical manifestations. En: De la Cruz MV, Markwald R. Living morphogenesis of the heart. Boston, Basel, Berlin. Birkhäuser. 1998: 99-120.
Manner J: Cardiac looping in the chick embryo: A morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec 2000; 259: 248-62.
Castro-Quezada A, Nadal Ginard B, De la Cruz MV: Experimental study of the formation of the bulbo-ventricular loop in the chick. J Embryol Exp Morphol 1972; 27: 623- 637.
De la Cruz MV, Sánchez-Gómez C, Cayré R: The developmental components of the ventricles: their significance in congenital cardiac malformations. Cardiol Young 1991; 1: 123-128
De la Cruz MV: Embryological development of the ventricular inlets. Septation and atrio-ventricular valve apparatus. En: De la Cruz MV, Markwald R. Living Morphogenesis of the Heart. Boston, Basel, Berlin. Birkhäuser. 1998: 131-155.
De la Cruz MV, Sánchez Gómez C, Arteaga M, Argüello C: Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 1977; 123: 661-686.
De la Cruz MV, Sánchez Gómez C: Straight tube heart. Primitive cardiac cavities vs primitive cardiac segments. En. De la Cruz MV, Markwald R. Living morphogenesis of the heart Boston. Basel. Berlin. Birkhäuser 1998: 85-98.
Anselmi G, De la Cruz MV: Embryological development of the atria. Septation and viscero-atrial situs. En: De la Cruz MV, Markwald R. Living morphogenesis of the heart. Boston, Basel, Berlin. Birkhäuser. 1998: 169-186.
Hiruma T, Hirakow R: Epicardial formation in embryonic chick heart: Computer-aided reconstruction, scanning and transmission electron microscopic studies. Am J Anat 1988; 184: 129-138.
Männer J, Pérez-Ponares JM, Macías D, Muñoz-Chapuli: The origin, formation and developmental significance of the epicardium: A review. Cell Tiss Org 2001; 169: 89-103.
Mikawua T, Gourdier RG: Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 1996; 173: 221-232.
García-Peláez I, Arteaga M: Experimental study of the development of the truncus arteriosus of the chick embryo heart. Anat Rec 1993; 237: 378-384.
Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH, Kirby ML: Conotruncal myocardium arises from a secondary heart field. Development 2001; 128: 3179-3188.
Mjaatvedt CH, Nakaoka T, Moreno-Rodríguez R, Norris RA, Kern MJ, Eisenberg CA, et al: The outflow of the heart is recruited from a novel heart-forming field. Dev Biol 2001; 238: 97-109.
Nonaka S, Shiratori H, Saijoh Y: Determination of left right patterning of the mouse embryo by artificial nodal flow. Nature 2002; 418: 96-99.
Srivastava D, Cserjesi P, Olson N: A subclass of bHLH proteins required for cardiac morphogenesis. Science 1995; 270: 1995-1999.
Biben C, Harvey RP: Homeodomain factor Nkx2.5 controls left right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 1997; 11: 1357-1369.
Wang DZ, Reiter RS, Li-Chun JL, Wang Q, Williams HS, Krob LS, et al: Requirement of a novel gene Xin in cardiac morphogenesis. Development 1999; 126: 1281-1294.
Tzuda T, Philip M, Zile MH, Linask KK: Left right asimmetric localization of flectin in the extracellular matrix during heart looping. Dev Biol 1996; 173: 39-50.
Linask KK, Yu X, Chen Y, Han D: Directionality of heart looping: Effects of Pitx2c misexpression on flectin asymmetry and midline structures. Dev Biol 2002; 246: 407-417.
De la Cruz MV, Markwald, Krug R, Rumenoff L, Sánchez-Gómez C, Sadowinski S: Living Morphogenesis of the ventricles and their regional congenital pathology. Cardiol Young 2001; 11: 588-600.
Zhu L, Belmont JW, Ware SM: Genetics of human heterotaxias. Eur J Hum Genet 2006; 14: 17-25.
Gebbia M, Ferrero GB, Pilia G, Bassi MT, Aylsworth A, Penman-Splitt M, et al: X linked situs abnormalities result from mutations in ZIC3. Nat Genet 1997; 17: 305-308.
Kosaki K, Bassi M, Kosaki R, Lewin M, Belmont J, Schauer G, Casey B: Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left -right axis development. Am J Hum Genet 1999; 64: 712-721.
Bamford RN, Roessler E, Burdine RD, Saplakoglu U, de la Cruz J, Splitt M, Goodship JA, et al: Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left- right laterality defects. Nat Genet 2000; 26: 365-369.
Kosaki R, Gebbia M, Kosaki K, Lewin M, Bowers P, Towbin JA, Casey B: Left- right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet 1999; 82: 70-76.
Robinson SW, Morris CD, Goldmuntz E, Reller MD, Jones MA, Steiner RD, et al: Missense mutations in creld1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet 2003; 72: 1047-1052.
Watanabe Y, Benson DW, Yano S, Akagi T, Yoshino M, Murray JC: Two novel frameshift mutations in NKX2.5 results in novel features including visceral inversus and sinus venosus type ASD. J Med Genet 2002; 39: 807-811.
Attie F, Muñóz- Castellanos L, Ovseyevitz J, Flores- Delgado I, Testelli MR, Buendia A: Crossed atrioventricular connections. Am Heart J 1980; 99: 163-172.
Anderson RH, Smith A, Wilkinson JL: Disharmony between atrioventricular connections and segmental combinations, unusual variants of “criss cross” hearts. J Am Coll Cardiol 1987; 10: 1274-1277.
De la Cruz MV, Giménez-Ribotta M, Saravalli O, Cayré R: The contribution of the inferior endocardial cushion of the atrioventricular canal to cardiac septation and to the development. Am J Anat 1983; 166: 63-72.
Van Mierop LHS, Alley RD, Kausel HW, Stranahan A: The anatomy and embryology of endocardial cushion defects. J Thorac Cardiovasc Surg 1962; 43: 71-83.
Netter FH, Van Mierop LHS: Embryology. En: Netter FH, editor. CIBA Collection of Medical Illustrations. Ardsley, New Jersey: CIBA Pharmaceutical Co. 1969; 5: 119-25.
Waldo KL, Kirby ML: Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days. Anat Rec 1993; 237: 385-399.
Kirby ML, Waldo KL: Role of the neural crest in congenital heart disease. Circulation 1990; 82: 332-340.