2023, Number 3
<< Back Next >>
Rev Biomed 2023; 34 (3)
Receptor for advanced glycation end products (RAGE) as a childhood obesity biomarker
Vega-Cárdenas M, Portales-Pérez DP, Vargas-Morales JM, Aradillas-García C
Language: Spanish
References: 63
Page: 296-305
PDF size: 228.01 Kb.
ABSTRACT
Introduction. Hyperglycemia and hyperlipidemia contribute to the
endogenous formation of advanced glycation end products (AGEs), and diet
constitutes one of the exogenous sources. The binding of AGEs to receptor
for glycation end products (RAGE) induces signaling pathways that activate
the transcription of inflammatory and oxidative stress markers. Soluble
RAGE (sRAGE) levels have been proposed as a biomarker in inflammatory
diseases. Several studies describe the role of RAGE in obesity, so it has been
discussed whether there is a differential pattern between children with normal
weight and obesity. Several studies describe the role of RAGE in obesity, so
it has been discussed whether there is a differential pattern between children
with normal weight and obesity.
Aim. Describe the relationship between RAGE, its isoforms, ligands,
biological functions, and comorbidities related to childhood obesity. To
determine if decreased sRAGE levels represent a biomarker of childhood
obesity based on the results of clinical, observational, and cross-sectional
studies.
Methodology. Descriptive review of studies published in the period from
2016 to 2022 in the PubMed and Google Scholar databases using the terms
“AGEs”, “RAGE”, “sRAGE”, “childhood obesity”.
Results and conclusion. A total of 141 articles related to the keywords
were consulted. The elimination criteria consisted of references published
before 2015, except for classic references. 63 articles from 2016 to 2022
were reviewed, six represent cross-sectional studies on sRAGE levels in
the pediatric population, finding differences in the expression of RAGE
according to nutritional status.
REFERENCES
Weihrauch-Blüher S, Schwarz P, Klusmann JH.Childhood obesity: increased risk for cardiometabolicdisease and cancer in adulthood. Metabolism. 2019 Mar;92:147–52. doi: 10.1016/j.metabol.2018.12.001
Di Cesare M, Sorić M, Bovet P, Miranda JJ, BhuttaZ, Stevens GA, et al. The epidemiological burden ofobesity in childhood: a worldwide epidemic requiringurgent action. BMC Med. 2019 Nov; 17(1) :212. doi:10.1186/s12916-019-1449-8
Drozdz D, Alvarez-Pitti J, Wójcik M, Borghi C, GabbianelliR, Mazur A, et al. Obesity and Cardiometabolic RiskFactors: From Childhood to Adulthood. Nutrients. 2021Nov; 13(11):4176. doi:10.3390/nu13114176.
De Onis M, Onyango AW, Borghi E, Siyam A, Nishida C,Siekmann J. Development of a WHO growth referencefor school-aged children and adolescents. Bull WorldHealth Organ. 2007 Sep; 85(9):660-7. doi: 10.2471/blt.07.043497.
Kansra AR, Lakkunarajah S, Jay MS. Childhood andAdolescent Obesity: A Review. Vol. 8, Frontiers inPediatrics. Front Pediatr. 2021 Jan; 12(8):581461.doi:10.3389/fped.2020.581461.
Caprio S, Santoro N, Weiss R. Childhood obesity andthe associated rise in cardiometabolic complications. NatMetab. 2020 Mar; 2(3):223-232. doi: 10.1038/s42255-020-0183-z.
Kumar S, Kelly AS. Review of Childhood Obesity:From Epidemiology, Etiology, and Comorbiditiesto Clinical Assessment and Treatment. Mayo ClinicProceedings. 2017 Feb; 92(2):251-265. doi: 10.1016/j.mayocp.2016.09.017.
Rogero MM, Calder PC. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients. 2018 Mar;10(4):432. doi: 10.3390/nu10040432.
Vincent HK, Taylor AG. Biomarkers and potentialmechanisms of obesity-induced oxidant stress inhumans. Int J Obes (Lond). 2006 Mar; (3):400-18. doi:
10.1038/sj.ijo.0803177.10. Faienza MF, Francavilla R, Goffredo R, Ventura A,Marzano F, Panzarino G, et al. Oxidative Stress inObesity and Metabolic Syndrome in Children andAdolescents. Horm Res Paediatr. 2012; 78(3):158–164.doi: 10.1159/000342642
Moldogazieva NT, Mokhosoev IM, Mel’Nikova TI,Porozov YB, Terentiev AA. Oxidative Stress andAdvanced Lipoxidation and Glycation End Products(ALEs and AGEs) in Aging and Age-Related Diseases.Oxid Med Cell Longev. 2019 Aug; 2019:3085756. doi:10.1155/2019/3085756.
Prasad K, Mishra M. AGE–RAGE Stress, Stressors, andAntistressors in Health and Disease. Int J Angiol. 2018Mar; (1):1-12. doi: 10.1155/2019/308575610.1055/s-0037-1613678.
Garay-Sevilla ME, Rojas A, Portero-Otin M, Uribarri J.Dietary AGEs as Exogenous Boosters of Inflammation.Nutr. 2021 Aug; 13(8):2802. doi: 10.3390/nu13082802.
Stern D, Du Yan S, Fang Yan S, Marie Schmidt A.Receptor for advanced glycation endproducts: Amultiligand receptor magnifying cell stress in diversepathologic settings. Adv Drug Deliv Rev. 2002 Dec;54(12):1615–25. doi:10.1016/s0169-409x(02)00160-6.
J Liu, A Lin. Wiring the cell signaling circuitry by theNF-kappa B and JNK1 crosstalk and its applications inhuman diseases. Oncogene. 2007 May; 26(22):3267-78.doi: 10.1038/sj.onc.1210417.
Chen YH, Chen ZW, Li HM, Yan XF, Feng B. AGE/RAGE-Induced EMP Release via the NOX-DerivedROS Pathway. J Diabetes Res. 2018 Mar; 2018:6823058.doi: 10.1155/2018/6823058.
Ruiz HH, Nguyen A, Wang C, He L, Li H, HallowellP, et al. AGE/RAGE/DIAPH1 axis is associated withimmunometabolic markers and risk of insulin resistancein subcutaneous but not omental adipose tissue in humanobesity. Int J Obes (Lond). 2021 Sep; 45(9):2083-2094.doi:10.1038/s41366-021-00878-3.
Erusalimsky JD. The use of the soluble receptor foradvanced glycation-end products (sRAGE) as a potentialbiomarker of disease risk and adverse outcomes.Redox Biol. 2021 Jun; 42:101958. doi: 10.1016/j.redox.2021.101958.
Henning C, Glomb MA. Pathways of the Maillardreaction under physiological conditions. Glycoconj J.
2016 Aug; 33(4):499–512. doi: 10.1007/s10719-016-9694-y.20. Perrone A, Giovino A, Benny J, Martinelli F. AdvancedGlycation End Products (AGEs): Biochemistry,Signaling, Analytical Methods, and Epigenetic Effects.Oxid Med Cell Longev. 2020 Mar; (2020):3818196. doi:10.1155/2020/3818196.
Xiang J, Liu F, Wang B, Chen L, Liu W, Tan S. Aliterature review on maillard reaction based on milkproteins and carbohydrates in food and pharmaceuticalproducts: Advantages, disadvantages, and avoidancestrategies. Foods. 2021 Aug; 10(9):1998. doi: 10.3390/foods10091998.
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al.New insights into oxidative stress and inflammationduring diabetes mellitus-accelerated atherosclerosis.Redox Biol. 2019 Jan; 20:247–60. doi: 10.1016/j.redox.2018.09.025.
Byun K, Yoo YC, Son M, Lee J, Jeong GB, Park YM,et al. Advanced glycation end-products producedsystemically and by macrophages: A commoncontributor to inflammation and degenerative diseases.Pharmacol Ther. 2017 Sep; 177:44–55. doi: 10.1016/j.pharmthera.2017.02.030.
Sugaya K, Fukagawa T, Matsumoto KI, Mita K,Takahashi EI, Ando A, et al. Three Genes in the HumanMHC Class III Region near the Junction with the ClassII: Gene for Receptor of Advanced Glycosylation EndProducts, PBX2 Homeobox Gene and a Notch Homolog,Human Counterpart of Mouse Mammary Tumor Geneint-3. Genomics. 1994 Sep 15;23(2):408–19. doi:10.1006/geno.1994.1517.
Hudson BI, Carter AM, Harja E, Kalea AZ, ArrieroM, Yang H, et al. Identification, classification, andexpression of RAGE gene splice variants. FASEB J.2008 May;22(5):1572–80. doi: 10.1096/fj.07-9909com.
Serveaux-Dancer M, Jabaudon M, Creveaux I,Belville C, Blondonnet R, Gross C, et al. Pathologicalimplications of receptor for advanced glycation endproduct(AGER) gene polymorphism. Dis Markers.2019 Feb ;(2019):2067353. doi: 10.1155/2019/2067353.
Raucci A, Cugusi S, Antonelli A, Barabino SM, MontiL, Bierhaus A, et al. A soluble form of the receptor foradvanced glycation endproducts (RAGE) is producedby proteolytic cleavage of the membrane-bound formby the sheddase a disintegrin and metalloprotease 10(ADAM10). FASEB J. 2008 Oct;22(10):3716–doi:10.1096/fj.08-109033
Park IH, Yeon SI, Youn JH, Choi JE, Sasaki N, ChoiIH, et al. Expression of a novel secreted splice variantof the receptor for advanced glycation end products(RAGE) in human brain astrocytes and peripheralblood mononuclear cells. Mol Immunol. 2004 Mar;40(16):1203–11. doi: 10.1016/j.molimm.2003.11.027.
Bongarzone S, Savickas V, Luzi F, Gee AD. Targetingthe Receptor for Advanced Glycation Endproducts(RAGE): A Medicinal Chemistry Perspective. J MedChem. 2017 Sep ;60(17):7213-7232. doi: 10.1021/acs.jmedchem.7b00058.
Aragno M, Mastrocola R. Dietary Sugars and EndogenousFormation of Advanced Glycation Endproducts:Emerging Mechanisms of Disease. Nutrients. 2017 Apr;9(4):385. doi: 10.3390/nu9040385.
Voyer, LE, Alvarado C. Reacción de Maillard: Efectospatogénicos. Med (Buenos Aires). 2019;79.2:137–43.
Pratte KA, Curtis JL, Kechris K, Couper D, Cho MH,Silverman EK, et al. Soluble receptor for advancedglycation end products (sRAGE) as a biomarkerof COPD. Respir Res. 2021 Apr; 22(1):127. doi.org/10.1186/s12931-021-01686-z.
Hudson BI, Lippman ME. Targeting RAGE Signalingin Inflammatory Disease. Annu Rev Med. 2018 Jan;69:349-364. doi: 10.1146/annurev-med-041316-085215
Rowan S, Bejarano E, Taylor A. Mechanistic targeting ofadvanced glycation end-products in age-related diseases.Biochim Biophys Acta Mol Basis Dis. 2018 Dec;1864(12):3631-3643. doi: 10.1016/j.bbadis.2018.08.036.
Teissier T, Boulanger É. The receptor for advancedglycation end-products (RAGE) is an importantpattern recognition receptor (PRR) for inflammaging.Biogerontology. 2019 Jun; 20(3):279-301. doi: 10.1007/s10522-019-09808-3
Ruiz HH, Ramasamy R, Schmidt AM. AdvancedGlycation End Products: Building on the Concept of the“Common Soil” in Metabolic Disease. Endocrinology.2020 Jan; 161(1):bqz006. doi:10.1210/endocr/bqz006.
Kawai T, Autieri M V., Scalia R. Inflammation: FromCellular Mechanisms to Immune Cell Education:Adipose tissue inflammation and metabolic dysfunctionin obesity. Am J Physiol Cell Physiol. 2021 Mar;320(3):C375-C391. doi: 10.1152/ajpcell.00379.2020.
Longo M, Zatterale F, Naderi J, Parrillo L, FormisanoP, Raciti GA, et al. Adipose Tissue Dysfunctionas Determinant of Obesity-Associated MetabolicComplications. Int J Mol Sci. 2019 May; 20(9):2358.doi: 10.3390/ijms20092358.
Feng Z, Du Z, Shu X, Zhu L, Wu J, Gao Q, et al. Role ofRAGE in obesity-induced adipose tissue inflammationand insulin resistance. Cell Death Discov . 2021 Oct;7(1):305. doi: 10.1038/s41420-021-00711-w.
Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS,Reverdatto S, Gugger PF, et al. Receptor for advancedglycation end products (Rage) and mechanisms andtherapeutic opportunities in diabetes and cardiovasculardisease: Insights from human subjects and animalmodels. Front Cardiovasc Med. 2020 Mar; 7:37. doi:10.3389/fcvm.2020.00037.
Feng Z, Zhu L, Wu J. RAGE signalling inobesity and diabetes: focus on the adipose tissuemacrophage. Adipocyte. 2020 Jan 1;9(1):563–6. doi:10.1080/21623945.2020.1817278.
Dozio E, Vianello E, Bandera F, Longhi E, BrizzolaS, Nebuloni M, et al. Soluble Receptor for AdvancedGlycation End Products: A Protective Molecule againstIntramyocardial Lipid Accumulation in Obese ZuckerRats? Mediators Inflamm. 2019 Feb; 2019:2712376. doi:10.1155/2019/2712376.
Velayoudom-Cephise FL, Cano-Sanchez M, BercionS, Tessier F, Yu Y, Boulanger E, et al. Receptor foradvanced glycation end products modulates oxidativestress and mitochondrial function in the soleus muscle ofmice fed a high-fat diet. Appl Physiol Nutr Metab. 2020Oct;45(10):1107-1117. doi: 10.1139/apnm-2019-0936.
Aglago EK, Rinaldi S, Freisling H, Jiao L, HughesDJ, Fedirko V, et al. Soluble Receptor for AdvancedGlycation End-products (sRAGE) and Colorectal CancerRisk: A Case-Control Study Nested within a EuropeanProspective Cohort. Cancer Epidemiol Biomarkers Prev.2021 Jan; 30(1):182–92. doi: 10.1158/1055-9965.EPI-20-0855.
Laudenslager M, Lazo M, Wang D, Selvin E, ChenPH, Pankow JS, et al. Association between the solublereceptor for advanced glycation end products (sRAGE)and NAFLD in participants in the Atherosclerosis Risk inCommunities Study. Dig Liver Dis. 2021 Jul; 53(7):873-878. doi: 10.1016/j.dld.2021.02.005.
Nowak A, Przywara-Chowaniec B, Damasiewicz-Bodzek A, Blachut D, Nowalany-Kozielska E, Tyrpień-Golder K. Advanced glycation end-products (Ages) andtheir soluble receptor (srage) in women suffering fromsystemic lupus erythematosus (SLE). Cells. 2021 Dec;10(12):3523. doi: 10.3390/cells10123523.
Detzen L, Cheng B, Chen CY, Papapanou PN, Lalla E.Soluble Forms of the Receptor for Advanced GlycationEndproducts (RAGE) in Periodontitis. Sci Rep. 2019Jun; 9(1):8170. doi: 10.1038/s41598-019-44608-2.
Tsoporis JN, Hatziagelaki E, Gupta S, Izhar S, Salpeas V,Tsiavou A, et al. Circulating Ligands of the Receptor forAdvanced Glycation End Products and the Soluble Formof the Receptor Modulate Cardiovascular Cell Apoptosisin Diabetes. Molecules. 2020 Nov; 25(22):5235. doi:10.3390/molecules25225235.
Miranda ER, Somal VS, Mey JT, Blackburn BK, WangE, Farabi S, et al. Circulating soluble RAGE isoformsare attenuated in obese, impaired-glucose-tolerantindividuals and are associated with the developmentof type 2 diabetes. Am J Physiol Endocrinol Metab.2017 Dec; 313(6):E631-E640. doi: 10.1152/ajpendo.00146.2017.
Guclu M, Ali A, Eroglu DU, Büyükuysal SO, Cander S,Ocak N. Serum Levels of sRAGE Are Associated withBody Measurements, but Not Glycemic Parameters inPatients with Prediabetes. Metab Syndr Relat Disord.2016 Feb;14(1):33-9. doi: 10.1089/met.2015.0078.
Chung ST, Onuzuruike AU, Magge SN. Cardiometabolicrisk in obese children. Ann N Y Acad Sci.2018;1411(1):166. doi: 10.1111/nyas.13602.
Pearce C, Islam N, Bryce R, McNair ED. AdvancedGlycation End Products:Receptors for AdvancedGlycation End Products Axis in Coronary StentRestenosis: A Prospective Study. Int J Angiol. 2018 Dec;27(4):213-222. doi: 10.1055/s-0038-1673660.
Tsoporis JN, Hatziagelaki E, Gupta S, Izhar S, Salpeas V,Tsiavou A, et al. Circulating Ligands of the Receptor forAdvanced Glycation End Products and the Soluble Formof the Receptor Modulate Cardiovascular Cell Apoptosisin Diabetes. Molecules. 2020 Nov; 25(22):5235. doi:10.3390/molecules25225235.
Popp CJ, Zhou B, Manigrasso MB, Li H, Curran M, HuL, et al. Soluble Receptor for Advanced Glycation EndProducts (sRAGE) Isoforms Predict Changes in RestingEnergy Expenditure in Adults with Obesity duringWeight Loss. Curr Dev Nutr. 2022 Mar 29;6(5):nzac046.doi: 10.1093/cdn/nzac046.
Corica D, Aversa T, Ruggeri RM, Cristani M, AlibrandiA, Pepe G, et al. Could AGE/RAGE-related oxidativehomeostasis dysregulation enhance susceptibility topathogenesis of cardio-metabolic complications inchildhood obesity? Front Endocrinol (Lausanne). 2019Jun; 10:426. doi: 10.3389/fendo.2019.00426.
Masania J, Malczewska-Malec M, Razny U, GoralskaJ, Zdzienicka A, Kiec-Wilk B, et al. Dicarbonyl stressin clinical obesity. Glycoconj J. 2016 Aug; 33(4):581-9.doi: 10.1007/s10719-016-9692-0.
Gupta A, Uribarri J. Dietary Advanced Glycation EndProducts and Their Potential Role in CardiometabolicDisease in Children. Horm Res Paediatr. 2016;85(5):291-300. doi: 10.1159/000444053.
Rodríguez-Mortera R, Luevano-Contreras C, Solorio-Meza S, Gómez-Ojeda A, Caccavello R, Bains Y, et al.Soluble Receptor for Advanced Glycation End Productsand Its Correlation with Vascular Damage in Adolescentswith Obesity. Horm Res Paediatr. 2019; 92(1):28-35.doi: 10.1159/000501718.
Rowisha M, El-Batch M, El Shikh T, El Melegy S,Aly H. Soluble receptor and gene polymorphism forAGE: relationship with obesity and cardiovascularrisks. Pediatr Res. 2016 Jul; 80(1):67-71. doi: 10.1038/pr.2016.55.
Garciá-Salido A, Melen G, Gómez-Pinã V, Onõro-Otero G, Serrano-González A, Casado-Flores J, et al.Circulating soluble RAGE and cell surface RAGE onperipheral blood mononuclear cells in healthy children. JPediatr Endocrinol Metab. 2018 Jun; 31(6):649-654. doi:10.1515/jpem-2017-0512.
Ruelas Cinco E del C, Madrigal BR, Domínguez RosalesJA, Maldonado González M, De la Cruz Color L, RamírezMeza SM, et al. Expression of the receptor of advancedglycation end-products (RAGE) and membranal locationin peripheral blood mononuclear cells (PBMC) in obesityand insulin resistance. Iran J Basic Med Sci. 2019 Jun;22(6):623-630. doi: 10.22038/ijbms.2019.34571.8206.
Garay-Sevilla ME, Torres-Graciano S, Villegas-Rodríguez ME, Rivera-Cisneros AE, Wrobel K, UribarriJ. Advanced glycation end products and their receptorsdid not show any association with body mass parametersin metabolically healthy adolescents. Acta Paediatr IntJ Paediatr. 2018 Dec 1;107(12):2146–51. doi: 10.1111/apa.14426.
Gurecká R, Koborová I, Csongová M, Šebek J, ŠebekováK. Correlation among soluble receptors for advancedglycation end-products, soluble vascular adhesionprotein-1/semicarbazide-sensitive amine oxidase (sVAP-1) and cardiometabolic risk markers in apparentlyhealthy adolescents: a cross-sectional study. GlycoconjJ. 2016 Aug;33(4):599-606. doi: 10.1007/s10719-016-9696-9.