2021, Number 4
<< Back Next >>
Revista Cubana de Obstetricia y Ginecología 2021; 47 (4)
In vitro effect of the interaction between human sperm and Chikungunya and Zika viruses
Méndez CYA, Montaño MVM, Urcuqui-Inchima S, Cardona MWD, Velilla PA
Language: Spanish
References: 47
Page:
PDF size: 839.97 Kb.
ABSTRACT
Introduction: The endemic and epidemic behavior of the arbovirosis transmitted by different species of the genus Aedes has contributed to the rapid geographical distribution and dissemination of the diseases known as Zika fever and Chikungunya fever, caused by the Zika and Chikungunya viruses, respectively. While there is evidence of the sexual transmission of Zika, and the presence of Chikungunya has been observed in semen, the effects of the interaction of these two viruses with the sperm are not known very well.
Objective: to determine the in-vitro effects of the interaction of Zika and Chikungunya viruses in the conventional and functional sperm parameters of human sperm.
Methods: An experimental study was carried out in the Laboratory of the Reproduction Group, Faculty of Medicine, at the University of Antioquia from July 2019 to July 2021. The sperm of eleven samples of semen of healthy individuals were incubated with Zika and Chikungunya viruses for 3 h a 37 ° C, 5 % CO2. For each sample, mobility and sperm viability by microscope were quantified. In addition, it was evaluated the potential of the sperm mitochondrial membrane, the integrity and lipoperoxidation of the sperm membrane, and the production of reactive species of sperm intracellular oxygen, in response to the incubation with zika or chikungunya by flow cytometry.
Results: The incubation of the sperm with Zika decreased mobility and sperm viability, and negatively affected the evaluated functional parameters. In contrast, Chikungunya slightly increased sperm mobility.
Conclusions: The results suggest that Zika virus interacts with human sperm and produces an imbalance between oxidative stress and its antioxidant capacity. This affects sperm mobility and could be involved in sperm quality and fertile potential of infected men.
REFERENCES
Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L. Chikungunya virus infection: an overview. New Microbiol. 2013;36(3):211-27. DOI: http://doi.org/10.1016/j.rmu.2015.06.001
Hamel R, Dejarnac O, Wichit S. Biology of Zika Virus Infection in Human Skin Cells. J Virol. 2015;89(17):8880-96. DOI: https://doi.org/10.1128/JVI.00354-15
Brito CA, Henriques-Souza A, Soares CR, et al. Persistent detection of Zika virus RNA from an infant with severe microcephaly–a case report. BMC infectious diseases. 2018;18(1):1-9. DOI: http://doi.org/10.1186/s12879-018-3313-4
Penot P, Brichler S, Guilleminot J. Infectious Zika virus in vaginal secretions from an HIV-infected woman, France, August 2016. Eurosurveillance. 2017;22(3):304-44. DOI: http://doi.org/10.2807/1560-7917.ES.2017.22.3.30444
Arsuaga M, Bujalance SG, Díaz-Menéndez M, Vázquez A, Arribas JR. Probable sexual transmission of Zika virus from a vasectomised man. The Lancet Infectious diseases. 2016;16(10):1107. DOI: http://doi.org/10.1016/S1473-3099(16)30320-6
Huits R, De Smet B, Ariën KK, Van Esbroeck M, Bottieau E, Cnops L. Zika virus in semen: a prospective cohort study of symptomatic travellers returning to Belgium. Bulletin of the World Health Organization. 2017;95(12):802. DOI: https://doi.org/10.2471/BLT.17.181370
Lalle E, Colavita F, Iannetta M. Prolonged detection of dengue virus RNA in the semen of a man returning from Thailand to Italy, January 2018. Euro Surveill. 2018;23(18):18-00197. DOI: https://doi.org/10.2807/1560-7917.ES.2018.23.18.18-00197
Bujan L, Mansuy J-M, Hamdi S, Pasquier C, Joguet G. 1 year after acute Zika virus infection in men. The Lancet Infectious Diseases. 2020;20(1):25-6. DOI: http://doi.org/10.1016/S1473-3099(19)30678-4
Govero J, Esakky P, Scheaffer SM. Zika virus infection damages the testes in mice. Nature. 2016;540(7633):438-42. DOI: http://doi.org/10.1038/nature20556
Griffin BD, Muthumani K, Warner BM. DNA vaccination protects mice against Zika virus-induced damage to the testes. Nature communications. 2017;8(1):1-8. DOI: http://doi.org/10.1038/ncomms1574
Uraki R, Jurado KA, Hwang J. Fetal growth restriction caused by sexual transmission of Zika virus in mice. The Journal of infectious diseases. 2017;215(11):1720-4. DOI: https://doi.org/10.1093/infdis/jix204
Peregrine J, Gurung S, Lindgren MC. Zika virus infection, reproductive organ targeting, and semen transmission in the male olive baboon. Journal of Virology. 2019;94(1):e01434-19. DOI: http://doi.org/10.1128/JVI.01434-19
Bandeira AC, Campos GS, Rocha VFD. Prolonged shedding of Chikungunya virus in semen and urine: A new perspective for diagnosis and implications for transmission. ID Cases. 2016;6:100-3. DOI: https://dx.doi.org/10.1016/j.idcr.2016.10.007
Organization WHO. WHO laboratory manual for the examination and processing of human semen. Behalf of the World Health Organization. Ginebra: Medical Panamericana; 2010.
Mayorga Torres JM, Peña B, Cadavid AP, Cardona Maya WD. La importancia clínica del ADN espermático en el análisis seminal cotidiano. Revista Chilena de Obstetrícia y Ginecología. 2015 [acceso20/01/2021];80:265-8. Disponible en: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-75262015000300012
Mayorga-Torres BJ, Camargo M, Agarwal A, du Plessis SS, Cadavid AP, Cardona Maya WD. Influence of ejaculation frequency on seminal parameters. Reprod Biol Endocrinol. 2015;13(1):47. DOI: https://doi.org/10.1186/s12958-015-0045-9
Mayorga‐Torres B, Camargo M, Cadavid A, du Plessis S, Cardona Maya WJA. Are oxidative stress markers associated with unexplained male infertility? 2017;49(5):e12659. DOI: https://doi.org/10.1111/and.12659
Mayorga-Torres BJ, Cardona-Maya W, Cadavid Á, Camargo M. Evaluación de los parámetros funcionales espermáticos en individuos infértiles normozooespérmicos. Actas Urol Esp. 2013;37(4):221-7. DOI: http://doi.org/10.1016/j.acuro.2012.06.008
Cardona Maya WD, Du Plessis SS, Velilla PA. Semen as virus reservoir? Journal of assisted reproduction and genetics. 2016;33(9):1255-6. DOI: https://doi.org/10.1007/s10815-016-0747-8
Cardona Maya WD, Du Plessis SS, Velilla PA. SARS-CoV-2 and the testis: similarity with other viruses and routes of infection. Reprod Biomed Online. 2020;40(6):763-4. DOI: https://doi.org/10.1016/j.rbmo.2020.04.009
Cardona Maya WD, Rugeles MT. Father-to-Child HIV Transmission: Do Not Forget Sperm Cells as Vectors. AIDS Res Hum Retroviruses. 2019;35(9):785. DOI: https://doi.org/10.1089/AID.2019.0055
Cardona-Maya WD, Hernandez PAV, Henao DE. Male Ebola Survivors: Do Not Forget to Use a Condom! Reprod Sci. 2019;26(10):1326. DOI: https://doi.org/10.1177/1933719114563733
Cardona-Maya W, Velilla PA, Montoya CJ, Cadavid A, Rugeles MT. In vitro human immunodeficiency virus and sperm cell interaction mediated by the mannose receptor. J Reprod Immunol. 2011;92(1-2):1-7. DOI: https://doi.org/10.1016/j.jri.2011.09.002
Omolaoye TS, Adeniji AA, Cardona Maya WD, du Plessis SS. SARS-COV-2 (Covid-19) and male fertility: Where are we? [Article]. Reprod Toxicol. 2021;99:65-70. DOI: https://doi.org/10.1016/j.reprotox.2020.11.012
Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP. Molecular biology, pathogenesis and pathology of mumps virus. J Pathol. 2015;235(2):242-52. DOI: https://doi.org/10.1002/path.4445
Savasi V, Parisi F, Oneta M. Effects of highly active antiretroviral therapy on semen parameters of a cohort of 770 HIV-1 infected men. PLoS One. 2019;14(2):e0212194. DOI: https://doi.org/10.1371/journal.pone.0212194
Dulioust E, Du AL, Costagliola D. Semen alterations in HIV-1 infected men. Hum Reprod. 2002;17(8):2112-8. DOI: https://doi.org10.1093/humrep/17.8.2112
Karamolahi S, Yazdi RS, Zangeneh M, Makiani MJ, Farhoodi B, Gilani MAS. Impact of hepatitis B virus and hepatitis C virus infection on sperm parameters of infertile men. Int J Reprod Biomed. 2019;17(8):551-6. DOI: https://doi.org/10.18502/ijrm.v17i8.4820
Aitken RJ, Buckingham DW, Brindle J, Gomez E, Baker HW, Irvine DS. Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Hum Reprod. 1995;10(8):2061-71. DOI: https://doi.org/10.1093/oxfordjournals.humrep.a136237
Griveau JF, Dumont E, Renard P, Callegari JP, Le Lannou D. Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J Reprod Fertil. 1995;103(1):17-26. DOI: https://doi.org/10.1530/jrf.0.1030017
Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429-36. DOI: https://doi.org/10.1093/humrep/13.6.1429
Cruz DF, Lume C, Silva JV. Oxidative stress markers: Can they be used to evaluate human sperm quality? Turk J Urol. 2015;41(4):198-207. DOI: https://doi.org/10.5152/tud.2015.06887
Pereira R, Sa R, Barros A, Sousa M. Major regulatory mechanisms involved in sperm motility. Asian J Androl. 2017;19(1):5-14. DOI: https://doi.org/10.4103/1008-682X.167716
Hosseinzadeh Colagar A, Karimi F, Jorsaraei SG. Correlation of sperm parameters with semen lipid peroxidation and total antioxidants levels in astheno- and oligoasheno- teratospermic men. Iran Red Crescent Med J. 2013;15(9):780-5. DOI: https://doi.org/10.5812/ircmj.6409
Kasai T, Ogawa K, Mizuno K. Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian J Androl. 2002;4(2):97-103. DOI: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0272.2010.01117.x
Marchetti C, Obert G, Deffosez A, Formstecher P, Marchetti P. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod. 2002;17(5):1257-65. DOI: https://doi.org/10.1093/humrep/17.5.1257
Paoli D, Gallo M, Rizzo F. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil Steril. 2011;95(7):2315-9. DOI: https://doi.org/10.1016/j.fertnstert.2011.03.059
Agnihotri SK, Agrawal AK, Hakim BA. Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev Biol Anim. 2016;52(9):953-60. DOI: https://doi.org10.1007/s11626-016-0061-x
Gallon F, Marchetti C, Jouy N, Marchetti P. The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil Steril. 2006;86(5):1526-30. DOI: https://doi.org/10.1016/j.fertnstert.2006.03.055
Wang X, Sharma RK, Gupta A. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil Steril. 2003;80 Suppl 2:844-50. DOI: https://doi.org/10.1016/s0015-0282(03)00983-x
Alamo A, De Luca C, Mongioi LM. Mitochondrial Membrane Potential Predicts 4-Hour Sperm Motility. Biomedicines. 2020;8(7). DOI: https://doi.org10.3390/biomedicines8070196
Barbagallo F, La Vignera S, Cannarella R, Aversa A, Calogero AE, Condorelli RA. Evaluation of Sperm Mitochondrial Function: A Key Organelle for Sperm Motility. J Clin Med. 2020;9(2). DOI: https://doi.org/10.3390/jcm9020363
Avelino-Silva VI, Alvarenga C, Abreu C. Potential effect of Zika virus infection on human male fertility? Rev Inst Med Trop Sao Paulo. 2018;60:e64. DOI: https://doi.org/10.1590/S1678-9946201860064
Joguet G, Mansuy JM, Matusali G. Effect of acute Zika virus infection on sperm and virus clearance in body fluids: a prospective observational study. Lancet Infect Dis. 2017;17(11):1200-8. DOI: https://doi.org/10.1016/S1473-3099(17)30444-9
Si L, Meng Y, Tian F. A Peptide-Based Virus Inactivator Protects Male Mice Against Zika Virus-Induced Damage of Testicular Tissue. Front Microbiol. 2019;10:2250. DOI: https://doi.org/10.3389/fmicb.2019.02250
Govero J, Esakky P, Scheaffer SM. Zika virus infection damages the testes in mice. Nature. 2016;540(7633):438-42. DOI: https://doi.org/10.1038/nature20556
Vogt MB, Frere F, Hawks SA, Perez CE, Coutermarsh-Ott S, Duggal NK. Persistence of Zika virus RNA in the epididymis of the male reproductive tract. Virology. 2021;(560):43-53. DOI: https://doi.org/10.1016/j.virol.2021.05.001