2023, Number 4
<< Back Next >>
Med Crit 2023; 37 (4)
Central venous oxygen saturation: prognostic marker in severe pneumonia due to SARS-CoV-2?
Rodríguez PNI, Betancourt VJE, Sánchez DJS, Peniche MKG, Buelna GF, Calyeca SMV
Language: Spanish
References: 32
Page: 314-319
PDF size: 246.71 Kb.
ABSTRACT
Introduction: central venous oxygen saturation (ScvO
2) translates tissue oxygenation through the relationship between oxygen consumption and availability. Severe SARS-CoV-2 pneumonia impacts morbidity and mortality, so identifying patients at risk of disease progression through serum markers such as ScvO
2 would be imperative.
Objective: to identify whether ScvO
2 is a prognostic marker in severe SARS-CoV-2 pneumonia.
Material and methods: retrospective, longitudinal, descriptive, analytical study. The population was classified according to the value of ScvO
2: Group 1: ScvO
2 < 70%. Group 2: ScvO
2 70-80%. Group 3: ScvO
2 > 80%. The study variables were recorded, as well as the clinical outcome during their stay in the Intensive Care Unit (ICU): improvement or death.
Results: 115 patients were recruited, group 1 included 31 patients, group 2 and 3 included 52 and 32 patients respectively. Male sex was the most affected with 71 patients (61.7%). The median age was 65 years. Mortality was 51.6%, 42.3% and 68.8% for group 1, 2 and 3 respectively p ≥ 0.05. The ScvO
2 group of 70-80% presented an inverse relationship with mortality with an exponent B -0.185, OR of 0.83 (95% CI 0.33-2.00) p = 0.69 while group 3 presented an exponent B of 1 with OR of 2.93 (95% CI 0.97-8.8) p = 0.05.
Conclusion: ScvO
2 > 80% in patients with severe SARS-CoV-2 pneumonia may be a prognostic factor for fatal outcome independent of PaO
2/FiO
2.
REFERENCES
Reuter DA, Russell JA, Mekontso Dessap A. Beta-blockers in septic shock to optimize hemodynamics? Yes. Intensive Care Med. 2016;42(10):1607-1609.
Weissman C. The metabolic response to stress: an overview and update. Anesthesiology. 1990;73(2):308-327.
Prescott HC, Angus DC. Enhancing recovery from sepsis: a review. JAMA. 2018;319(1):62-75.
American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20(6):864-874.
Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. International Sepsis Definitions Conference. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29(4):530-538.
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801-810.
De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98-104.
Hernández G, Teboul JL. Is the macrocirculation really dissociated from the microcirculation in septic shock? Intensive Care Med. 2016;42(10):1621-1624.
Rivera Solís G, Sánchez Díaz JS, Martínez Rodríguez EA, García Méndez RC, Huanca Pacaje JM, Calyeca Sánchez MV. Clasificación clínica de la perfusión tisular en pacientes con choque séptico basada en la saturación venosa central de oxígeno (SvcO2) y la diferencia venoarterial de dióxido de carbono entre el contenido arteriovenoso de oxígeno (ΔP(v-a)CO2/C(a-v)O2). Med Crit. 2016;30(5):283-289.
Hernandez G, Boerma EC, Dubin A, Bruhn A, Koopmans M, Edul VK, et al. Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. J Crit Care. 2013;28(4):538.e9-14.
Ospina-Tascón GA, Umaña M, Bermúdez WF, Bautista-Rincón DF, Valencia JD, Madriñán HJ, et al. ¿Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016;42(2):211-221.
Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19(Suppl 3):S8.
Zhou Y, Ding F, Bao W, Xue Y, Han L, Zhang X, et al. Clinical features in coronavirus disease 2019 (COVID-19) patients with early clearance and prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Ann Transl Med. 2021;9(8):665.
Rao S, Lau A, So HC. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: a mendelian randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care. 2020;43(7):1416-1426.
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-481.
Sun P, Lu X, Xu C, Sun W, Pan B. Understanding of COVID-19 based on current evidence. J Med Virol. 2020;92(6):548-551.
Guan W, Ni Z, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720.
Henry BM, Vikse J. Clinical characteristics of Covid-19 in China. N Engl J Med. 2020;382(19):1860-1861.
Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin- aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653-1659.
Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301-1308.
Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368-1377.
Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31(8):1066-1071.
Vallet B. Vascular reactivity and tissue oxygenation. Intensive Care Med. 1998;24(1):3-11.
Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI. Multicenter study of central venous oxygen saturation (ScvO2) as a predictor of mortality in patients with sepsis. Ann Emerg Med. 2010;55(1):40-46.e1.
Davis WB, Rennard SI, Bitterman PB, Crystal RG. Pulmonary oxygen toxicity. Early reversible changes in human alveolar structures induced by hyperoxia. N Engl J Med. 1983;309(15):878-883.
Jones R, Zapol WM, Reid L. Pulmonary arterial wall injury and remodeling by hyperoxia. Chest. 1983;83(5 Suppl):40S-42S.
Kumar VHS, Chaker El Khoury J, Gronostajski R, Wang H, Nielsen L, Ryan RM. Nfib hemizygous mice are protected from hyperoxic lung injury and death. Physiol Rep. 2017;5(16):e13398.
Jones RC, Capen DE. Alveolar oxygen tension and angio-architecture of the distal adult lung. Ultrastruct Pathol. 2013;37(6):395-407.
Ricard N, Simons M. When it is better to regress: dynamics of vascular pruning. PLoS Biol. 2015;13(5):e1002148.
Hanidziar D, Nakahori Y, Cahill LA, Gallo D, Keegan JW, Nguyen JP, et al. Characterization of pulmonary immune responses to hyperoxia by high-dimensional mass cytometry analyses. Sci Rep. 2020;10(1):4677.
Nowak-Machen M, Schmelzle M, Hanidziar D, Junger W, Exley M, Otterbein L, et al. Pulmonary natural killer T cells play an essential role in mediating hyperoxic acute lung injury. Am J Respir Cell Mol Biol. 2013;48(5):601-609.
Hanidziar D, Robson SC. Hyperoxia and modulation of pulmonary vascular and immune responses in COVID-19. Am J Physiol Lung Cell Mol Physiol. 2021;320(1):L12-L16.