2022, Number 3
<< Back Next >>
Rev Elec Psic Izt 2022; 25 (3)
The hurst exponent as a parameter for analyzing eeg signals to understand human cognition: a review
Maureira CF
Language: Spanish
References: 47
Page: 930-948
PDF size: 309.81 Kb.
ABSTRACT
The following work is a review of the articles that use the Hurst
exponent to analyze electroencephalogram signals. The search was
carried out in the Medline/Pubmed and Scopus databases, obtaining
a total of 37 articles that met the inclusion criteria (published
between 1 January 2000 and 31 December 2019, English or
Spanish, research articles and studies on human beings). 64.9% of
the work is devoted to the understanding of brain activity at rest or
during the resolution of cognitive problems, and 27% to the
categorization of signals by software or classification systems. The
need for the individual study of brain activity is concluded, since the
exponents of Hurst show a very diverse activity between the
subjects, even carrying out the same task or subjected to the same
interventions.
REFERENCES
Acharya, U., Faust, O., Kannathal, N., Chua, T. y Laxminarayan, S. (2005). Nonlinearanalysis of EEG signals at various sleep stages. Comput MethodsPrograms Biomed, 80(1), 37-45.
Acharya, U., Sree, S., Alvin, A., Yanti, R. y Suri, J. (2012). Application of non-linearand wavelet based features for the automated identification of epileptic EEGsignals. Int J Neural Syst, 22(2), 1250002.
Amezquita-Sanchez, J., Mammone, N., Morabito, F., Marino, S. y Adeli, H. (2019).A novel methodology for automated differential diagnosis of mild cognitiveimpairment and the Alzheimer's disease using EEG signals. J NeurosciMethods, 322, 88-95.
Balli, T. y Palaniappan, R. (2010). Classification of biological signals using linearand nonlinear features. Physiol Meas, 31(7), 903-920.
Barrat, A., Barthelemy, M. y Vespignani, A. (2008). Dynamical processes oncomplex networks. New York: Cambridge University Press.
Canals, M., Olivares, R., Labra, F. y Novoa, F. (2000). Ontogenetic changes in thefractal geometry of the bronchial tree in Rattus norvegicus. Biol Res, 33, 31-35.
Capra, F. (1998). La trama de la vida. Barcelona: Anagrama.
Cerquera, A., Arns, M., Buitrago, E., Gutiérrez, R. y Freund, J. (2012). Nonlineardynamics measures applied to EEG recordings of patients with attentiondeficit/hyperactivity disorder: quantifying the effects of a neurofeedbacktreatment. Conf Proc IEEE Eng Med Biol Soc, 2012, 1057-1060.
Colombo, M., Wei, Y., Ramautar, J., Linkenkaer-Hansen, K., Tagliazucchi, E. yVan Someren, E. (2016). More Severe Insomnia Complaints in People withStronger Long-Range Temporal Correlations in Wake Resting-State EEG.Front Physiol, 7, 576.
Daneshyari, M., Kamkar, L. y Daneshyari, M. (2010). Epileptic EEG: acomprehensive study of nonlinear behavior. Adv Exp Med Biol, 680, 677-683.
Díaz, H., Maureira, F., Cohen, E., Córdova, F., Palominos, F., Otárola, J. y Cañete,L. (2015). Individual differences in the orden/chaos balance of the brain selforganization.Annals of Data Science, 2(4), 421-438.
Díaz, H., Maureira, F. y Córdova, F. (2017). Temporal scaling and inter-individualhemispheric asymmetry of chaos estimation from EEG time series. ProcediaComputer Science, 122, 339-345.
Díaz, H., Maureira, F. y Córdova, F. (2018). Times series of closed and open eyesEEG conditions reveal differential characteristics in the temporality of linearand no-linear analysis domain. Procedia Computer Science, 139, 570-577.
Díaz, H., Maureira, F., Córdova, F. y Palominos, F. (2017). Long-range linearcorrelation and nonlinear chaos estimation differentially characterizesfunctional conectivity and organization of the brain EEG. Procedia ComputerScience, 122, 857-864.
Díaz, H., Maureira, F., Flores, E., Cifuentes, H. y Córdova, F. (2019).Synchronizing oscillatory chaos in the brain. Procedia Computer Science, 162, 982-989.
Díaz, H., Maureira, F., Flores, E. y Córdova, F. (2018). Intra e inter-hemisphericcorrelation of the order/chaos fluctuation in the brain activity during a motorimagination task. Procedia Computer Science, 139, 456-463.
Díaz, H., Maureira, F., Flores, G., Fuentes, I., García, F., Maertens, P., et al.(2018). Moving correlations and chaos in the brain during closed eyes basalconditions. Procedia Computer Science, 139, 473-480.
Díaz, H., Maureira, F., Flores, E., Gárate, E. y Muñoz, S. (2019). Intra and interindividualvariability in the chaotic component and functional connectivity ofthe EEG signal in basal closed eyes condition. Procedia Computer Science,162, 966-973.
Díaz, H., Maureira, F., Otárola, J., Rojas, R., Alarcón, O. y Cañete, L. (2019). EEGBeta band frequency domain evaluation for assessing stress and anxiety inresting, eyes closed, basal conditions. Procedia Computer Science, 162,974-981.
Euler, M., Wiltshire, T., Niermeyer, M. y Butner, J. (2016). Working memoryperformance inversely predicts spontaneous delta and theta-band scalingrelations. Brain Res, 1637, 22-33.
Flores, F., Maureira, F., Díaz, H., Navarro, B., Gavotto, O. y Matheu, A. (2019).Efectos de una sesión de ejercicio físico sobre la actividad neurofisiológicadurante la resolución de una prueba de atención selectiva. Retos, 36, 390-396.
Geng, S., Zhou, W., Yuan, Q., Cai, D. y Zeng, Y. (2011). EEG non-linear featureextraction using correlation dimension and Hurst exponent. Neurol Res,33(9), 908-912.
Goldberger, A., Rigney, D. y West, B. (1990). Chaos and fractals in humanphysiology. Scie Amer, 262(2), 42-49.
Gupta, A., Singh, P. y Karlekar, M. (2018). A novel signal modeling approach forclassification of seizure and seizure-free EEG signals. IEEE Trans NeuralSyst Rehabil Eng, 26(5), 925-935.
Hartley, C., Berthouze, L., Mathieson, S., Boylan, G., Rennie, J., Marlow, N., et al.(2012). Long-range temporal correlations in the EEG bursts of humanpreterm babies. PLoS One, 7(2), e31543.
Ibáñez-Molina, A. y Iglesias-Parro, S. (2014). Fractal dimension of internally andexternally generated conscious percepts. Brain and Cognition, 87, 69-75.
Jausovec, N. y Jausovec, K. (2010). Resting brain activity: differences betweengenders. Neuropsychologia, 48(13), 3918-3925.
Kale, M. y Butar, F. (2011). Fractal analysis of time series and distributionproperties of Hurst exponent. Journal of Mathematical Sciences andMathematics Education, 5, 8-19.
Kannathal, N., Acharya, U., Lim, C. y Sadasivan, P. (2005). Characterization ofEEG-a comparative study. Comput Methods Programs Biomed, 80(1), 17-23.
Kannathal, N., Puthusserypady, S. y Min, L. (2006). Elman neural networks fordynamic modeling of epileptic EEG. Conf Proc IEEE Eng Med Biol Soc,2006, 6145-6148.
Khasnobish, A., Datta, S., Bose, R., Tibarewala, D. y Konar, A. (2017). Analyzingtext recognition from tactually evoked EEG. Cogn Neurodyn, 11(6), 501-513.
Klonowski, W. (2016). Fractal analysis of electroencephalographic time series(EEG Signals). In Di Leva, A. (Ed). The fractal geometry of the brain(pp.413-429). New York: Springer-Verlag.
Lai, M., Lombardo, M., Chakrabarti, B., Sadek, S., Pasco, G., Wheelwright, S., etal. (2010). A shift to randomness of brain oscillations in people with autism.Biol Psychiatry, 68(12), 1092-1099.
Liang, Z., Li, D., Ouyang, G., Wang, Y., Voss, L., Sleigh, J., et al. (2012).Multiscale rescaled range analysis of EEG recordings in sevofluraneanesthesia. Clin Neurophysiol, 123(4), 681-688.
Lorenz, E. (1995). La esencia del Caos. Madrid: Debate.
Madan, S., Srivastava, K., Sharmila, A. y Mahalakshmi, P. (2018). A case study onDiscrete Wavelet Transform based Hurst exponent for epilepsy detection. JMed Eng Technol, 42(1), 9-17.
Maureira, F. (2107). ¿Qué es la inteligencia? Madrid: Bubok.
Munia, T., Haider, A., Schneider, C., Romanick, M. y Fazel-Rezai, R. (2017). Anovel EEG based spectral analysis of persistent brain function alteration inathletes with concussion history. Sci Rep, 7(1), 17221.
Natarajan, K., Acharya, U., Alias, F., Tiboleng, T. y Puthusserypady, S. (2004).Nonlinear analysis of EEG signals at different mental states. Biomed EngOnline, 3(1), 7.
Racz, F., Stylianou, O., Mukli, P. y Eke, A. (2018). Multifractal dynamic functionalconnectivity in the resting-state brain. Front Physiol, 9, 1704.
Rahmani, B., Wong, C., Norouzzadeh, P., Bodurka, J. y McKinney, B. (2018).Dynamical Hurst analysis identifies EEG channel differences between PTSDand healthy controls. PLoS One, 13(7), e0199144.
Stam, J. (2005). Nonlinear analysis of EEG and MEG: A review of an emergingfield. Clinical Neurophysiology,116, 2266-2301.
Subha, D., Joseph, P., Acharya, U. y Lim, C. (2010). EEG signal analysis: asurvey. J Med Syst, 34(2), 195-212.
von Wegner, F., Tagliazucchi, E., Brodbeck, V. y Laufs, H. (2016). Analytical andempirical fluctuation functions of the EEG microstate random walk - Shortrangevs. long-range correlations. Neuroimage, 141, 442-451.
Weiss, B., Clemens, Z., Bódizs, R., Vágó, Z. y Halász, P. (2009). Spatio-temporalanalysis of monofractal and multifractal properties of the human sleep EEG.J Neurosci Methods, 185(1), 116-124.
Yuan, Q., Zhou, W., Li, S. y Cai, D. (2011). Epileptic EEG classification based onextreme learning machine and nonlinear features. Epilepsy Res, 96(1-2),29-38.
Zarjam, P., Epps, J., Lovell, N. y Chen F. (2012). Characterization of memory loadin an arithmetic task using non-linear analysis of EEG signals. Conf ProcIEEE Eng Med Biol Soc, 2012, 3519-3522.