2023, Number 1
<< Back Next >>
Rev Med UAS 2023; 13 (1)
Diagnosis and classification of diabetic retinopathy using ultra-wide field fundus imaging, comparing Optos® and Clarus 700® systems
García-Medina KA, Romo-García E
Language: Spanish
References: 23
Page: 33-44
PDF size: 233.49 Kb.
ABSTRACT
Objective: to determine the concordance in the diagnosis and classification of diabetic retinopathy using ultra-wide field fundus images,
comparing the Optos
® and Clarus 700
® systems.
Materials and methods: a comparative, descriptive, prospective and crosssectional
study was carried out in which 144 eyes of 77 patients (41 men and 36 women) were included to estimate the K (kappa)
concordance coefficient with a confidence of 95%.
Results: Cohen's Kappa coefficient obtained was .846, which translates as very
good agreement between the Optos
® and Clarus 700
® systems in the diagnosis and classification of diabetic retinopathy using ultrawide
field fundus images.
Conclusions: both ultra-wide field fundus imaging systems proved to be similar in the diagnosis and classification
of diabetic retinopathy; however, Optos
® allowed for larger fundus images than Clarus 700
®; while Clarus 700
® produced
fewer artifacts and provided more detailed fundus images. There is no record of previous studies that compare both ultra-wide field
systems that have been carried out in Mexico, which allows using the information obtained as a basis for subsequent studies..
REFERENCES
Lechner J, O'Leary OE, Stitt AW. The pathologyassociated with diabetic retinopathy. VisionRes. 2017 Oct 1;139:7-14.
Honasoge A, Nudleman E, Smith M, RajagopalR. Emerging insights and interventions for diabeticretinopath. Curr Diab Rep. 2019Oct;19(10):1-6.
Altmann C, Schmidt MH. The role of microgliain diabetic retinopathy: inflammation, microvasculaturedefects and neurodegeneration.Int J Mol Sci. 2018 Jan;19(1):110.
Kashim RM, Newton P, Ojo O. Diabetic retinopathyscreening: A systematic review on patients’non-attendance. Int J Environ Res PublicHealth. 2018 Jan;15(1):157.
Cheloni R, Gandolfi SA, Signorelli C, Odone A.Global prevalence of diabetic retinopathy: protocolfor a systematic review and metaanalysis.BMJ Open. 2019 Mar1;9(3):e022188.
Wat N, Wong RL, Wong IY. Associations betweendiabetic retinopathy and systemic riskfactors. Hong Kong Med J. 2016 Dec1;22(6):589-99.
Simó-Servat O, Hernández C, Simó R. Diabeticretinopathy in the context of patients with diabetes.Ophthalmic Res. 2019;62(4):211-7.
Zheng Y, Lamoureux EL, Lavanya R, Wu R,Ikram MK, Wang JJ et al. Prevalence and riskfactors of diabetic retinopathy in migrant Indiansin an urbanized society in Asia: the SingaporeIndian eye study. Ophthalmology.2012 Oct 1;119(10):2119-24.
Raman R, Krishnan R, Kim Ramasamy SN.Diabetic retinopathy: A right time to intervene.Indian J Ophthalmol. 2020 Feb;68(2):305.
Wong TY, Sabanayagam C. Strategies to tacklethe global burden of diabetic retinopathy:from epidemiology to artificial intelligence. Ophthalmol.2020;243(1):9-20.
Solomon SD, Goldberg MF. ETDRS grading ofdiabetic retinopathy: still the gold standard?.Ophthalmic Res. 2019;62(4):190-5.
Bandello F, Cicinelli MV. 19th EURETINA congresskeynote lecture: diabetic retinopathy today.Ophthalmologica. 2020;243(3):163-71.
Wang W, Lo AC. Diabetic retinopathy: pathophysiologyand treatments. Int J Mol Sci. 2018Jun;19(6):1816.
Padhy SK, Takkar B, Chawla R, Kumar A. Artificialintelligence in diabetic retinopathy: A naturalstep to the future. Indian J Ophthalmol.2019 Jul;67(7):1004.
Liu TA, Arevalo JF. Wide-field imaging in proliferativediabetic retinopathy. Int J Retin Vitr.2019 Dec;5(1):1-4.
Falavarjani KG, Wang K, Khadamy J, SaddaSR. Ultra-wide-field imaging in diabetic retinopathy;an overview. J. Curr Ophthalmol. 2016Jun 1;28(2):57-60.
Linz MO, Scott AW. Wide-field imaging of sickleretinopathy. Int J Retin Vitr. 2019Dec;5(1):1-1.
Byberg S, Vistisen D, Diaz L, Charles MH, HajariJN, Valerius M et al. Optos widefield imagingversus conventional camera imaging in Danishpatients with type 2 diabetes. Acta Ophthalmol.2019 Dec;97(8):815-20.
Rabiolo A, Parravano M, Querques L, CicinelliMV, Carnevali A, Sacconi R et al. Ultra-widefieldfluorescein angiography in diabetic retinopathy:a narrative review. Clin Ophthalmol.
2017;11:803.20. Oh K, Kang HM, Leem D, Lee H, Seo KY,Yoon S. Early detection of diabetic retinopathybased on deep learning and ultra-wide-fieldfundus images. Sci Rep. 2021 Jan 21;11(1):1-9.
Ting DS, Cheung CY, Lim G, Tan GS, QuangND, Gan A et al. Development and validationof a deep learning system for diabetic retinopathyand related eye diseases using retinalimages from multiethnic populations with diabetes.JAMA. 2017 Dec 12;318(22):2211-23.
Lim G, Bellemo V, Xie Y, Lee XQ, Yip MY, TingDS. Different fundus imaging modalities andtechnical factors in AI screening for diabetic retinopathy:a review. Eye Vis. 2020 Dec;7(1):1-3.
Hirano T, Imai A, Kasamatsu H, Kakihara S,Toriyama Y, Murata T. Assessment of diabeticretinopathy using two ultra-wide-field fundusimaging systems, the Clarus® and Optos™systems. BMC Ophthalmol. 2018 Dec;18(1):1-7.