2023, Number 3
<< Back Next >>
Med Crit 2023; 37 (3)
Monitoring of invasive mechanical ventilation in the obese patient
Gómez AKI, Gómez RJC, Cinencio FCZ
Language: Spanish
References: 37
Page: 251-256
PDF size: 224.51 Kb.
ABSTRACT
In Mexico, obesity currently based on the National Survey on Health and Nutrition (ENSANUT), from the 2021 results it has been recorded that for the population over 20 years of age there is a prevalence of 73%. With the significant number of patients requiring invasive mechanical ventilation, it is important to consider what monitoring should be a diagnostic and follow-up tool that allows intermittent or continuous evaluation of obese patients on mechanical ventilation. The main objective of monitoring systems is to identify alterations or early signs that allow damage to be reduced. The obese per se is a patient who already has metabolic-type complications in addition to a chronic inflammatory process, develops an increase in oxygen consumption compared to a non-obese person, intrathoracic volumes are reduced due to increased heart muscle, the decrease in thoracic elasticity due to the increase in the surrounding adipose tissue and the increase in intra-abdominal pressure that decrease compliance. Some variables to be monitored during mechanical ventilation in obese patients will be discussed, such as peripheral arterial oxygen saturation (SpO
2), capnography, driving pressure, transpulmonary pressure, esophageal pressure.
REFERENCES
Barquera S, Hernández-Barrera L, Trejo B, et al. Obesidad en México, prevalencia y tendencias en adultos. Ensanut 2018-19. Salud Publica Mex. 2020; 62(6): 682-9. Disponible en: https://www.saludpublica.mx/index.php/spm/article/view/11630
Kánter CI. Magnitud del sobrepeso y obesidad en México: un cambio de estrategia para su erradicación. Mir Legis. 2021; (197): 18. Disponible en: http://bibliodigitalibd.senado.gob.mx/bitstream/handle/123456789/5127/ML_197.pdf?sequence=1&isAllowed=y
Fernández GL, Puentes GAB, García BM. Relación entre obesidad, diabetes e ingreso en UCI en pacientes COVID-19. Med Clin (Barc). 2020; 155: 314-315.
Frat JP, Gissot V, Ragot S, et al. Association des Réanimateurs du Centre-Ouest (ARCO) study group. Impact of obesity in mechanically ventilated patients: a prospective study. Intensive Care Med. 2008; 34(11): 1991-1998. Available in: https://pubmed.ncbi.nlm.nih.gov/18670754/
Morris AE, Stapleton RD, Rubenfeld GD, et al. The association between body mass index and clinical outcomes in acute lung injury. Chest. 2007; 131(2): 342-348. Available in: https://pubmed.ncbi.nlm.nih.gov/17296631/
Brower RG, Matthay MA, Morris A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000; 342(18): 1301-1308. Available in: https://pubmed.ncbi.nlm.nih.gov/10793162/#:~:text=Conclusions%3A%20In%20patients%20with%20acute,of%20days%20without%20ventilator%20use
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013; 368(23): 2159-2168. Available in: https://pubmed.ncbi.nlm.nih.gov/23688302/
Ellulu MS, Patimah I, Khaza'ai H, et al. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017; 13(4): 851-863. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507106/
Green S, O'Connor E, Kiely C, et al. Effect of obesity on oxygen uptake and cardiovascular dynamics during whole-body and leg exercise in adult males and females. Physiol Rep. 2018; 6(9): e13705. Available in: https://pubmed.ncbi.nlm.nih.gov/29756296/
Nikolaos M, Stefanatou H, Kanakaki M. Control of ventilation obesity. In: Esquinas A, Lemyze M. Mechanical ventilation in the critical ill obese patient, Springer. 2018, p. 3-14. Available in: https://www.ellibs.com/book/9783319492537/mechanical-ventilation-in-the-critically-ill-obese-patient
De Jong A, Chanques G, Jaber S. Mechanical ventilation in obese ICU patients: from intubation to extubation. Crit Care. 2017; 21(1): 63. Available in: https://pubmed.ncbi.nlm.nih.gov/28320439/
Sampson MG, Grassino AE. Load compensation in obese patients during quiet tidal breathing. J Appl Physiol Respir Environ Exerc Physiol. 1983; 55(4): 1269-1276. Available in: https://pubmed.ncbi.nlm.nih.gov/6629961/
Ball L, Pelosi P. How I ventilate an obese patient. Crit Care. 2019; 23: 176. Available in: https://ccforum.biomedcentral.com/articles/10.1186/s13054-019-2466-x#citeas
Holguin F, Rojas M, Brown LA, et al. Airway and plasma leptin and adiponectin in lean and obese asthmatics and controls. J Asthma. 2011; 48(3): 217-223. Available in: https://pubmed.ncbi.nlm.nih.gov/21332421/
De Jong A, Wrigge H, Gattinoni L, et al. How to ventilate obese patients in the ICU. Intensive Care Med. 2020; 46(12): 2423-2435. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7582031/
Lagrand WK, van Slobbe-Bijlsma ER, Schultz MJ. Haemodynamic monitoring of morbidly obese intensive care unit patients. Neth J Med. 2013; 71(5): 234-242. Available in: https://pubmed.ncbi.nlm.nih.gov/23799309/
Reinius H, Jonsson L, Gustafsson S, et al. Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study. Anesthesiology. 2009; 111(5): 979-87. Availble in: https://pubmed.ncbi.nlm.nih.gov/19809292/
Mora CAL, Mora JI. Positive end-expiratory pressure. Treasure Island (FL): 2022 [Consulted 04 August 2022] Available in: https://www.ncbi.nlm.nih.gov/books/NBK441904/
Grassi L, Kacmarek R, Berra L. Ventilatory mechanics in the patient with obesity. Anesthesiology. 2020; 132(5): 1246-1256. Available in: https://pubmed.ncbi.nlm.nih.gov/32011342/
Nima A-M, Tianshiavid W, Rebecca S, et al. Obesity, tidal volume, and pulmonary deposition of fine particulate matter in children with asthma. Euro Resp J. 2022; 59(3). Available in: https://jhu.pure.elsevier.com/en/publications/obesity-tidal-volume-and-pulmonary-deposition-of-fine-particulate
De Jong A, Verzilli D, Jaber S. ARDS in obese patients: specificities and management. Crit Care. 2019; 23: 74. Available in: https://ccforum.biomedcentral.com/articles/10.1186/s13054-019-2374-0
Tusman G, Bohm SH, Suarez-Sipmann F. Advanced uses of pulse oximetry for monitoring mechanically ventilated patients. Anesth Analg. 2017; 124(1): 62-71. Available in: https://pubmed.ncbi.nlm.nih.gov/27183375/
Pedersen T, Nicholson A, Hovhannisyan K, et al. Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev. 2014; 2014 (3): CD002013. Available in: https://pubmed.ncbi.nlm.nih.gov/24638894/
Girardis M, Busani S, Damiani E, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016; 316(15): 1583-1589. Available in: https://jamanetwork.com/journals/jama/fullarticle/2565306
Nassar BS, Schmidt GA. Capnography during critical illness. Chest. 2016; 149(2): 576-585. Available in: https://pubmed.ncbi.nlm.nih.gov/26447854/
Anderson CT, Breen PH. Carbon dioxide kinetics and capnography during critical care. Crit Care. 2000; 4(4): 207-215. Available in: https://pubmed.ncbi.nlm.nih.gov/11094503/
Lam T, Nagappa M, Wong J, et al. Continuous pulse oximetry and capnography monitoring for postoperative respiratory depression and adverse events: a systematic review and meta-analysis. Anesth Analg. 2017; 125(6): 2019-2029. Available in: https://pubmed.ncbi.nlm.nih.gov/29064874/
Rackley CR. Monitoring during mechanical ventilation. Respir Care. 2020; 65(6): 832-846. Available in: https://pubmed.ncbi.nlm.nih.gov/32457174/
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015; 372(8): 747-755. Available in: https://pubmed.ncbi.nlm.nih.gov/25693014/
Aoyama H, Pettenuzzo T, Aoyama K, et al. Association of driving pressure with mortality among ventilated patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med. 2018; 46(2): 300-306. Available in: https://pubmed.ncbi.nlm.nih.gov/29135500/
Roca O, Peñuelas O, Muriel A, et al. Driving pressure is a risk factor for ARDS in mechanically ventilated subjects without ARDS. Respir Care. 2021; 66(10): 1505-1513. Available in: https://pubmed.ncbi.nlm.nih.gov/34344717/
Akoumianaki E, Maggiore SM, Valenza F, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014; 189(5): 520-531. Available in: https://pubmed.ncbi.nlm.nih.gov/24467647/
Owens RL, Campana LM, Hess L, et al. Sitting and supine esophageal pressures in overweight and obese subjects. Obesity (Silver Spring). 2012; 20(12): 2354-2360. Available in: https://pubmed.ncbi.nlm.nih.gov/22695479/
Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008; 359(20): 2095-2104. Available in: https://pubmed.ncbi.nlm.nih.gov/19001507/
Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017; 195(4): 438-442. Available in: https://pubmed.ncbi.nlm.nih.gov/27626833/
Brochard L. Ventilation-induced lung injury exists in spontaneously breathing patients with acute respiratory failure: yes. Intensive Care Med. 2017; 43(2): 250-252. Available in: https://pubmed.ncbi.nlm.nih.gov/28074228/
Bertoni M, Spadaro S, Goligher EC. Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care. 2020; 24: 106. Available in: https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-2777-y#citeas