2023, Number 2
<< Back Next >>
Med Crit 2023; 37 (2)
Characteristics and outcomes of patients ventilated for SARS-CoV-2 pneumonia in a Chilean hospital
Tomicic V, Veliz A, Pizarro S, Zelada D, Tomicic K, Morales G, Guerrero I, Guerrero J
Language: Spanish
References: 37
Page: 99-105
PDF size: 271.32 Kb.
ABSTRACT
Introduction: coronavirus infection is an emerging pathology, there are few data regarding ventilatory management. Different pulmonary phenotypes make the MV process difficult. This encouraged us to analyze our COVID-19 patients with MV.
Material and methods: all patients with SARS-CoV-2 pneumonia who were admitted ventilated to our unit through March to June 2020 were included. Demographics, severity scores, ventilatory settings, arterial gases, lung mechanics, and outcomes are analyzed. The patients who received prone position (PP) are described. Patients were categorized according to the median static compliance (Cst) and if it was ≤ 20, > 20 a ≤ 30 y > 30 in day 1.
Results: 118 patients, the mean age was 56.4 ± 1.3, 76.4% males. APACHE II and SOFA on admission: 13.6 ± 0.5 and 8.3 ± 0.2. 47.5% of the patients required PP. The MV, ICU and hospital stay were 13.5 ± 0.9; 16.8 ± 0.9 and 23.8 ± 1.5 days. The in-hospital mortality of PP and supine patients was 32.1 and 11.3%, p = 0.005. Overall mortality 21.2%. Mortality of patients with Cst ≤ 20 mL/cmH
2O was 44.4%.
Conclusion: a significant percentage require early PP to overcome hypoxemia and although most respond, it does not ensure a good hospital outcome. The patients with compliance ≤ 20ml/ cmH
2O have higher mortality.
REFERENCES
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513.
Organización Mundial de la Salud. Observaciones del director general en la sesión informativa para los medios de comunicación sobre 2019-nCoV el 11 de febrero de 2020. [consultado el 12 de febrero de 2020] 2020. Disponible en: https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48(8):2940-2947.
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513.
Argenziano MG, Bruce SL, Slater CL, Tiao JR, Baldwin MR, Barr RG, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ. 2020;369:m1996.
World Health Organization. COVID-19 weekly epidemiological update [www.CoVID-19.Who.int].
Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46(6):1099-1102.
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-1207.
Zarantonello F, Andreatta G, Sella N, Navalesi P. Prone position and lung ventilation and perfusion matching in acute respiratory failure due to COVID-19. Am J Respir Crit Care Med. 2020;202(2):278-279.
Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-2168.
Mora-Arteaga JA, Bernal-Ramírez OJ, Rodríguez SJ. Efecto de la ventilación mecánica en posición prona en pacientes con síndrome de dificultad respiratoria aguda. Una revisión sistemática y metaanálisis. Med Intensiva. 2015;39(6):352-365.
Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;46(12):2200-2211.
Tsolaki V, Siempos I, Magira E, Kokkoris S, Zakynthinos GE, Zakynthinos S. PEEP levels in COVID-19 pneumonia. Crit Care. 2020;24(1):303.
Gattinoni L, Meissner K, Marini JJ. The baby lung and the COVID-19 era. Intensive Care Med. 2020;46(7):1438-1440. doi: 10.1007/s00134-020-06103-5.
Zampieri FG, Costa EL, Iwashyna TJ, Carvalho CRR, Damiani LP, Taniguchi LU, et al. Heterogeneous effects of alveolar recruitment in acute respiratory distress syndrome: a machine learning reanalysis of the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial. Br J Anaesth. 2019;123(1):88-95.
Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174(3):268-278.
Okamoto VN, Borges JB, Amato MB. Recruitment maneuvers in ARDS. In: Slutsky AS, Brochard L, editors. Update in intensive care and emergency medicine: mechanical ventilation. Berlin; Heidelberg; New York: Springer-Verlag; 2004. pp. 335-352.
Suarez-Sipmann F, Böhm SH, Tusman G, Pesch T, Thamm O, Reissmann H, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 2007;35(1):214-221.
Monge MI, Gil A, Gracia M, Díaz JC. Cambios respiratorios y hemodinámicos durante una maniobra de reclutamiento pulmonar mediante incrementos y decrementos progresivos de PEEP. Med Intensiva. 2012;36(2):77-88.
Tusman G, Bohm SH, Suarez-Sipmann F. Alveolar recruitment during mechanical ventilation-where are we in 2013? Trends Anaesth Crit Care. 2013;3:238-245.
Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-1308.
Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100-1108.
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788-800.
Guérin C, Albert RK, Beitler J, Gattinoni L, Jaber S, Marini JJ, et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med. 2020;46(12):2385-2396.
Tomicic V, Espinoza M, Andresen M, Molina J, Calvo M, Ugarte H, et al. Characteristics and factors associated with mortality in patients receiving mechanical ventilation: first Chilean multicenter study. Rev Med Chil. 2008;136(8):959-967.
Duan EH, Adhikari NKJ, D'Aragon F, Cook DJ, Mehta S, Alhazzani W, et al. Management of acute respiratory distress syndrome and refractory hypoxemia. a multicenter observational study. Ann Am Thorac Soc. 2017;14(12):1818-1826.
Laffey JG, Bellani G, Pham T, Fan E, Madotto F, Bajwa EK, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42(12):1865-1876.
Grieco DL, Bongiovanni F, Chen L, Menga LS, Cutuli SL, Pintaudi G, et al. Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit Care. 2020;24(1):529.
Laverdure F, Delaporte A, Bouteau A, Genty T, Decailliot F, Stéphan F. Impact of initial respiratory compliance in ventilated patients with acute respiratory distress syndrome related to COVID-19. Crit Care. 2020;24(1):412.
Carboni Bisso I, Huespe I, Lockhart C, Massó A, Gonzalez Anaya J, Hornos M, et al. Clinical characteristics of critically ill patients with COVID-19. Medicina (B Aires). 2021;81(4):527-535.
Marini JJ, Amato MB. Lung recruitment during ARDS. In: Marini JJ, Evans TW (eds). Acute lung injury. Update in Intensive Care and Emergency Medicine, vol 30. Springer, Berlin, Heidelberg. 1998. pp. 236-257.
Pelosi P, Tubiolo D, Mascheroni D, Vicardi P, Crotti S, Valenza F, et al. Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med. 1998;157(2):387-393.
Kacmarek RM, Villar J, Sulemanji D, Montiel R, Ferrando C, Blanco J, et al. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med. 2016;44(1):32-42.
Coppola S, Froio S, Chiumello D. Higher vs. lower PEEP in ARDS: just one part of the whole. J Thorac Dis. 2018;10(1):56-59.
Costa ELV, Slutsky AS, Brochard LJ, Brower R, Serpa-Neto A, Cavalcanti AB, et al. Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2021;204(3):303-311.
Schuijt MTU, Schultz MJ, Paulus F, Serpa Neto A; PRoVENT–COVID Collaborative Group. Association of intensity of ventilation with 28-day mortality in COVID-19 patients with acute respiratory failure: insights from the PRoVENT-COVID study. Crit Care. 2021;25(1):283.