2021, Number 3
<< Back Next >>
Rev Cubana Med Trop 2021; 73 (3)
Plantas peruanas de uso tradicional como fuente potencial de moléculas con actividad contra la COVID-19
Delgado-Paredes GE, Delgado-Rojas PR, Rojas-Idrogo C
Language: Spanish
References: 68
Page: 1-19
PDF size: 398.50 Kb.
ABSTRACT
Introduction:
The current situation of COVID-19 is a big issue for the human population. At present, no healing drug is available in the market. Researchers are doing their best to produce drugs to fight the disease. Various efforts are being considered based on different directions of scientific knowledge and technologies for the treatment of the disease. Unfortunately, none of these drugs works absolutely against the pandemic. Therefore, bioactive molecules from plants, animals and microorganisms could be a better option to treat COVID-19.
Objective:
Review the literature about species of the flora of Peru used for the treatment of respiratory diseases and highlight the plants with potential in the production of secondary metabolites and plant lectins as an alternative against COVID-19.
Methods:
A review was conducted of scientific articles related to the use of traditional medicine in Peru, China, and India for the treatment of respiratory diseases, as well as information about plant lectins and secondary metabolites potentially useful against COVID-19.
Results:
A long list is presented of genera and species of the flora of Peru with great potential against COVID-19. Most of these species belong to the Asteraceae, Loranthaceae, Piperaceae, Viscaceae and Zingiberaceae families. Numerous species are endemic to Peru.
Conclusions:
The flora of Peru has more than 22 000 plant species. Many of these species are traditionally used in the treatment of respiratory diseases and are potentially useful for the treatment of COVID-19.
REFERENCES
Valtueña AA, Mittnik A, Key FM, Haak W, Allmäe R, Belinskij A, et al. The stone age plague and its persistence in Eurasia. Curr Biol. 2017;27:3683-91.e8. Doi: https://doi.org/10.1016/j.cub.2017.10.025
AtlasMagazine. 20th and 21st century’s major pandemics. Atlas-mag.net 2020[acceso: 03/12/2020]. Disponible en: Disponible en: https://www.atlas-mag.net/en/article/20th-and-21st-century-s-major-pandemics
Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. Characterization of a novel coronavirus associated with severe acute respiratory síndrome. Science. 2003;300:1394-9. Doi: https://doi.org/10.1126/science.1085952
Mackenzie JS, Smith DW. COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don’t. Microbiol Aust. 2020;41:45-50. Doi: https://doi.org/10.1071/MA20013
Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270-3. Doi: https://doi.org/10.1038/s41586-020-2951-z
WHO (World Health Organization). WHO announces COVID-19 outbreak a pandemic. March 2020 [acceso: 27/12/2020]. Disponible en: Disponible en: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic
JHU CSSE (Johns Hopkins University Center for Systems Science and Engineering, SandData/COVID-19) [acceso: 19/12/2020]. Disponible en: Disponible en: https://coronavirus.jhu.edu/map.html
Khan S, Siddique R, Shereen MA, Ali A, Liu J, Bai Q, et al. Emergence of a novel coronavirus, severe acute respiratory sindrome coronavirus 2: biology and therapeutic options. J Clin Microbiol. 2020;58:e00187-e00120. Doi: https://doi.org/10.1128/JCM.00187-20
Chen Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophy Res Commun. 2020;525:135-40. https://doi.org/10.1016/j.bbrc.2020.02.071
Báez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-likenprotease: Structure, function and inhibition by designed antiviral compounds. Antivir Res. 2015;115:21-38. Doi: https://doi.org/10.1016/j.antiviral.2014.12.015
Wang C, Zheng X, Gai W, Zhao Y, Wang H, Wang H. MERS-CoV virus-like particles produced in insect cells induce specific humoral and cellular immunity in rhesus macaques. Oncotarget. 2017;8:12686-694. Doi: https://doi.org/10.18632/oncotarget.8475
Walls AC, Park YJ, Tortorice MA, Wall A, McGuire AT, Veesler D. Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;180:281-92. Doi: https://doi.org/10.1016/j.cell.2020.02.058
von der Thüsen J, van der Eerden M. Histopathology and genetic susceptibility in COVID-19 pneumonia. Eur J Clin Invest. 2020;50:e13259. Doi: https://doi.org/10.1111/eci.13259
Ogbole OO, Toluwanimi EA, Según PA, Faleye TC, Adeniji AJ. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virol J. 2018;15:110. Doi: https://doi.org/10.1186/s12985-018-1022-7
Lelešius R, Karpovaitė A, Mickienė R, Drevinskas T, Tiso N, Ragažinskienė O, et al. In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC Vet Res. 2019;15:178. Doi: https://doi.org/10.1186/s12917-019-1925-6
Capell T, Twyman RM, Armario-Najera V, Ma JK-C, Schillberg S, Christou P. Potential applications of plant biotechnology against SARS-CoV-2. Trends in Plant Science 2020;25(7). Doi: https://doi.org/10.1016/j.tplants.2020.04.009
Prasad A, Muthamilarasan M, Prasad M. Synergistic antiviral effects against SARS-CoV-2 by plant-based molecules. Plant Cell Rep. 2020;39:1109-14. Doi: https://doi.org/10.1007/s00299-020-02560-w
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020;19:149-50. Doi: https://doi.org/10.1038/d41573-020-00016-0
Bussmann RW, Glenn A. Medicinal plants used in Peru for the treatment of respiratory disorders. Rev Peru Biol. 2010;17:331-46.
Vásquez L, Escurra J, Aguirre R, Vásquez G, Vásquez LP. Plantas medicinales del norte del Perú. Fondo de Innovación, Ciencia y Tecnología (FINCyT) y Universidad Nacional Pedro Ruiz Gallo, Lambayeque (Perú). 2010. p. 382.
Keyaerts E, Li S, Vijgen L, Pannecouque C, Van Damme E, Peumans W, et al. Plant lectins are potent inhibitors of coronavirus by interfering with two targets in the viral replication cycle. Antivir Res. 2007;75:179-87. Doi: https://doi.org/10.1016/j.antiviral.2007.03.003
Benarba B, Pandiella A. Medicinal plants as sources of active molecules against Covid-19. Front Pharmacol. 2020;11:1189. Doi: https://doi.org/10.3389/fphar.2020.01189
Yonesi M, Rezazadeh A. Plants as a prospective source of natural anti-viral compounds and oral vaccines against COVID-19 coronavirus. Preprint - April 2020. Doi: https://doi.org/10.20944/preprints202004.0321.v1
Ding Y, Zeng L, Li R, Chen Q, Zhou B, Chen Q, et al. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune frunction. BMC Complement Altern Med. 2017;17:130. Doi: https://doi.org/10.1186/s12906-017-1585-7
Runfeng L, Yunlong H, Jicheng H, Weiqy P, Qinhai M, Yongxia S, et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res. 2020;156:e104761. https://doi.org/10.1016/j.phrs.2020.104761
Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. International J Biol Sci. 2020;16:1707-08. Doi: https://doi.org/10.7150/ijbs.45538
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic. Front Med. 2020;7:e444. Doi: https://doi.org/10.3389/fmed.2020.00444
Santos AFS, da Silva MDC, Napoleão TH, Paiva PMG, Correia MTS, Coelho LCBB. Lectins: function, structure, biological properties and potential applications. Curr Top Pept Protein Res. 2014 [acceso: 27/12/2020];15:41-62. Disponible en: Disponible en: http://hd1.handle.net/1822/43440 Disponible en: http://hd1.handle.net/1822/43440https://www.researchgate.net/publication/277708908_Lectins_Function_structure_biological_properties_and_potential_applications
Mazalovska M, Kouakam JC. Lectins as promising therapeutics for the prevention and treatments of HIV and other potential coinfections. Hindawi BioMed Res Int. 2018; 2018:e3750646. Doi: https://doi.org/10.1155/2018/3750646
Mitchell CA, Ramessar K, O’Keefe BR. Antiviral lectins: selective inhibitors of viral entry. Antivir Res. 2017;142:37-54. Doi: https://doi.org/10.1016/j.antiviral.2017.03.007
Lavelle EC, Grant G, Pusztai A, Pfüller U, Leavy O, McNeela E, et al. Mistletoe lectins enhance immune responses to intranasally co-administered herpes simplex virus glycoprotein D2. Immunology. 2002;107:268-74. Doi: https://doi.org/10.1046/j.1365-2567.2002.01492.x
Kumaki Y, Wandersee MK, Smith AJ, Zhou Y, Simmons G, Nelson NM, et al. Inhibitions of severe acute respiratory sindrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antivir Res. 2011;90:22-32. Doi: https://doi.org/10.1016/j.antiviral.2011.02.003
Brako L, Zarucchi J. Catálogo de las Angiospermas y Gimnospermas del Perú. Monogr. Syst Bot Missouri Bot. 1993;45.
Ulloa C, Zarucchi JL, León B. Diez años de Adiciones a la Flora del Perú: 1993-2003. Arnaldoa (Edic. Esp.). 2004:1-242.
Gondim ACS, da Silva SR, Mathys L, Noppen S, Liekens S, Sampaio AH, et al. Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. Med Chem Commun. 2019;10:390. Doi: https://doi.org/10.1039/c8md00508g
Yu MS, Lee J, Lee J, Kim Y, Chin YW, Jee JG, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett. 2012;22:4049-54. Doi: https://doi.org/10.1016/j.bmcl.2012.04.081
León B. Aspleniaceae del Perú. Rev Peru Biol. Número especial 13:896s. En: León B, Roque J, Ulloa, Pitman N, Jørgensen PM, Cano A (eds). El libro rojo de las plantas endémicas del Perú. Facultad de Ciencias Biológicas, UNMSM, Lima, Perú. 2006. p. 45. [acceso: 27/12/2020]. Disponible en: Disponible en: https://sisbib.unmsm.edu.pe/BVRevistas/biologia/v13n2/pdf/a151.pdf
Sharifi N, Souri E, Ziai SA, Amin G, Amanlou M. Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay. Daru. 2013;21:74. Doi: https://doi.org/10.1186/2008-2231-21-74
Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antivir Res. 2007;74:92-101. https://doi.org/10.1016/j.antiviral.2006.04.014
Schwarz S, Wang K, Yu WJ, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res. 2011;90:64-69. Doi: https://doi.org/10.1016/j.antiviral.2011.02.008
Kozłowska A, Szostak-Wegierek D. Flavonoids - food sources and health benefits. Roczniki Państwowego Zakładu Higieny. 2014;68:79-85.
Mamouni K, Zhang S, Li X, Chen Y, Yang Y, Kim J, et al. A novel flavonoid composition targets androgen receptor signaling and inhibits prostate cáncer growth in periclinal models. Neoplasia. 2018;20:789-99. Doi: https://doi.org/10.1016/j.neo.2018.06.003
Naser S, Amiri-Beshelib B, Sharifi-Mehra S. The isolation and determination of sulforaphane from broccoli tissues by reverse phase-high performance liquid chromatography. J Chin Chem Soc. 2011;58:906-10. Doi: https://doi.org/10.1002/jccs.201190143
Meyer M, Jaspers I. Respiratory protease/antiprotease balance determines susceptibility to viral infection and can be modified by nutritional antioxidants. Am. J. Physiol. Lung Cell Mol Physiol. 2015;308:1189-201. Doi: https://doi.org/10.1152/ajplung.00028.2015
Zeng J, Fan Y-J, Tan B, Su H-Z, Li Y, Zhang L-L, et al. Charactering the metabolism of cryptotanshinone by human P450 enzymes and uridine diphosphate glucoronosyltransferases in vitro. Acta Pharmacol Sin. 2018;39:1393-404. Doi: https://doi.org/10.1038/aps.2017.144
Wu Y-H, Wu Y-R, Li B, Yan Z-Y. Crytotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia. 2020;145:104633. Doi: https://doi.org/10.1016/j.fitote.2020.104633
Xu D, Lin TH, Li S, Da J, Wen XQ, Ding J, et al. Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells. Cancer Lett. 2012;316:11-22. Doi: https://doi.org/10.1016/jcanlet.2011.10.006
Song YH, Kim DW, Curtis-Long MJ, Yuk HJ, Wang Y, Zhuang N, et al. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biol Pharm Bull. 2014;37:1021-8. Doi: https://doi.org/10.1248/bpb.b14-00026
Park JY, Kim JH, Kim YM, Jeong HJ, Kim DW, Park KH, et al. Tanshinones as selected and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem. 2012a;20:5928-35. Doi: https://doi.org/10.1016/j.bmc.2012.07.038
Park J-Y, Jeong HJ, Kim JH, Kim YM, Park S-J, Kim D, et al. Diarylheptanoids from Alnus japonica inhibitor papain-like protease of severe acute respiratory sindrome coronovairus. Bioorg Med Chem. 2012b;5:2036-42. Doi: https://doi.org/10.1248/bpb.b12-00623
Park JY, Ko JA, Kim DW, Kim YM, Kwon H-J, Jeong HJ, et al. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARSCoV. J Enzyme Inhib Med Chem. 2016;31:23-30. Doi: https://doi.org/10.3109/14756366.2014.1003215
Park OK, Choi JH, Park JH, Kim IH, Yan BC, Ahn JH, et al. Comparison of neuroprotective effects of five major lipophilic diterpenoids from Danshen extract against experimentally induced transient cerebral ischemic damage. Fitoterapia. 2012;83:1666-74. Doi: https://doi.org/10.1016/j.fitote.2012.09.020
Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med. Chem. 2020;35:145-51. Doi: https://doi.org/10.1080/14756366.2019.1690480
Srivastava AK, Chaurasia JP, Khan R, Dhand C, Verma S. Role of medicinal plants of traditional use in recuperating devasting COVID-19 situation. Medicinal Aromat Plants. 2020;9:359. Doi: https://doi.org/10.35248/2167-0412.20.9.359
Parmar VS, Jain SC, Bisht KS, Jain R, Taneja P, Jha A, et al. Phytochemistry of the genus Piper. Phytochemistry. 1997;46:597-673. https://doi.org/10.1016/S0031-9422(97)00328-2
Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, et al. Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules. 2019;24:1364. Doi: https://doi.org/10.3390/molecules24071364
Mao QQ, Xu XY, Cao SY. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8:185. Doi: https://doi.org/10.3390/foods8060185
Prada J, Orduz-Díaz L, Coy-Barrera E. Baccharis latifolia: A lowly-valued asteraceous plant with chemical and medicinal potential in neotropics. Revista de la Facultad de Ciencias Básicas (Universidad Militar Nueva Granada). 2016;12:92-105. Doi: http://dx.doi.org/10.18359/rfcb.1858
Chen H, Du Q. Potential natural compounds for preventing 2019-n-CoV infection. Preprints, 2020. Doi: https://doi.org/10.20944/preprints202001.0358.v3
Yeh CF, Wang KC, Chiang LC, Shieh DE, Yen MH, San Chang J. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013;148:466-473. Doi: https://doi.org/10.1016/j.jep.2013.04.040
Deng YF, Aluko RE, Jin Q, Zhang Y, Yuan LJ. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme. Pharm Biol. 2012;50:401-06. Doi: https://doi.org/10.3109/13880209.2011.608076
Liu FY, Sun Q, Liang H, Li C, Lu R, Huang B, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. bioRxiv. 2020:e35824. Doi: https://doi.org/10.1101/2020.04.10.035824
Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacol Ther. 2018;190:105-27. Doi: https://doi.org/10.1016/j.pharmthera.2018.05.006
Wang W, Ma X, Han J, Zhou M, Ren H, Pan Q, et al. Neuroprotective Effect of Scutellarin on Ischemic Cerebral Injury by Down-Regulating the Expression of Angiotensin-Converting Enzyme and AT1 Receptor. PLoS One. 2016;11(1):e0146197. Doi: https://doi.org/10.1371/journal.pone.0146197
Lin C-W, Tsai F-J, Tsai CH, Lai C-C, Wan L, Ho T-Y, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res. 2005;68:36-42. Doi: https://doi.org/10.1016/j.antiviral.2005.07.002
Thuy BTP, My TTA, Hai NTT, Hieu LT, Hoa TT, Loan HTP, et al. Investigations into SARS-Co-2 resistance of compounds in garlic essential oil. ACS Omega. 2020;5:8312-20. Doi: https://doi.org/10.1021/acsomega.0c00772
Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50:87-4095. Doi: https://doi.org/10.1021/jm070295s
Choy K, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:e104786. Doi: https://doi.org/10.1016/j.antiviral.2020.104786